Anti-Counterfeiting Solution Employing Mobile RFID Environment

EPC Class-1 Generation-2 UHF tags, one of Radio frequency identification or RFID tag types, is expected that most companies are planning to use it in the supply chain in the short term and in consumer packaging in the long term due to its inexpensive cost. Because of the very cost, however, its resources are extremely scarce and it is hard to have any valuable security algorithms in it. It causes security vulnerabilities, in particular cloning the tags for counterfeits. In this paper, we propose a product authentication solution for anti-counterfeiting at application level in the supply chain and mobile RFID environment. It aims to become aware of distribution of spurious products with fake RFID tags and to provide a product authentication service to general consumers with mobile RFID devices like mobile phone or PDA which has a mobile RFID reader. We will discuss anti-counterfeiting mechanisms which are required to our proposed solution and address requirements that the mechanisms should have.

Ultrasound Assisted Method to Increase the Aluminum Dissolve Rate from Acidified Water

Aluminum salt that is generally presents as a solid phase in the water purification sludge (WPS) can be dissolved, recovering a liquid phase, by adding strong acid to the sludge solution. According to the reaction kinetics, when reactant is in the form of small particles with a large specific surface area, or when the reaction temperature is high, the quantity of dissolved aluminum salt or reaction rate, respectively are high. Therefore, in this investigation, water purification sludge (WPS) solution was treated with ultrasonic waves to break down the sludge, and different acids (1 N HCl and 1 N H2SO4) were used to acidify it. Acid dosages that yielded the solution pH of less than two were used. The results thus obtained indicate that the quantity of dissolved aluminum in H2SO4-acidified solution exceeded that in HCl-acidified solution. Additionally, ultrasonic treatment increased the rate of dissolution of aluminum and the amount dissolved. The quantity of aluminum dissolved at 60℃ was 1.5 to 2.0 times higher than that at 25℃.

An Investigation into Kanji Character Discrimination Process from EEG Signals

The frontal area in the brain is known to be involved in behavioral judgement. Because a Kanji character can be discriminated visually and linguistically from other characters, in Kanji character discrimination, we hypothesized that frontal event-related potential (ERP) waveforms reflect two discrimination processes in separate time periods: one based on visual analysis and the other based on lexcical access. To examine this hypothesis, we recorded ERPs while performing a Kanji lexical decision task. In this task, either a known Kanji character, an unknown Kanji character or a symbol was presented and the subject had to report if the presented character was a known Kanji character for the subject or not. The same response was required for unknown Kanji trials and symbol trials. As a preprocessing of signals, we examined the performance of a method using independent component analysis for artifact rejection and found it was effective. Therefore we used it. In the ERP results, there were two time periods in which the frontal ERP wavefoms were significantly different betweeen the unknown Kanji trials and the symbol trials: around 170ms and around 300ms after stimulus onset. This result supported our hypothesis. In addition, the result suggests that Kanji character lexical access may be fully completed by around 260ms after stimulus onset.

Stress Relaxation of Date at Different Temperature and Moisture Content of Product: A New Approach

Iran is one of the greatest producers of date in the world. However due to lack of information about its viscoelastic properties, much of the production downgraded during harvesting and postharvesting processes. In this study the effect of temperature and moisture content of product were investigated on stress relaxation characteristics. Therefore, the freshly harvested date (kabkab) at tamar stage were put in controlled environment chamber to obtain different temperature levels (25, 35, 45, and 55 0C) and moisture contents (8.5, 8.7, 9.2, 15.3, 20, 32.2 %d.b.). A texture analyzer TAXT2 (Stable Microsystems, UK) was used to apply uniaxial compression tests. A chamber capable to control temperature was designed and fabricated around the plunger of texture analyzer to control the temperature during the experiment. As a new approach a CCD camera (A4tech, 30 fps) was mounted on a cylindrical glass probe to scan and record contact area between date and disk. Afterwards, pictures were analyzed using image processing toolbox of Matlab software. Individual date fruit was uniaxially compressed at speed of 1 mm/s. The constant strain of 30% of thickness of date was applied to the horizontally oriented fruit. To select a suitable model for describing stress relaxation of date, experimental data were fitted with three famous stress relaxation models including the generalized Maxwell, Nussinovitch, and Pelege. The constant in mentioned model were determined and correlated with temperature and moisture content of product using non-linear regression analysis. It was found that Generalized Maxwell and Nussinovitch models appropriately describe viscoelastic characteristics of date fruits as compared to Peleg mode.

Effect of COD Loading Rate on Hydrogen Production from Alcohol Wastewater

The objective of this study was to investigate hydrogen production from alcohol wastewater by anaerobic sequencing batch reactor (ASBR) under thermophillic operation. The ASBR unit used in this study had a liquid holding volume of 4 L and was operated at 6 cycles per day. The seed sludge taken from an upflow anaerobic sludge blanket unit treating the same wastewater was boiled at 95 °C for 15 min before being fed to the ASBR unit. The ASBR system was operated at different COD loading rates at a thermophillic temperature (55 °C), and controlled pH of 5.5. When the system was operated under optimum conditions (providing maximum hydrogen production performance) at a feed COD of 60 000 mg/l, and a COD loading rate of 68 kg/m3 d, the produced gas contained 43 % H2 content in the produced gas. Moreover, the hydrogen yield and the specific hydrogen production rate (SHPR) were 130 ml H2/g COD removed and 2100 ml H2/l d, respectively.

Oscillation Effect of the Multi-stage Learning for the Layered Neural Networks and Its Analysis

This paper proposes an efficient learning method for the layered neural networks based on the selection of training data and input characteristics of an output layer unit. Comparing to recent neural networks; pulse neural networks, quantum neuro computation, etc, the multilayer network is widely used due to its simple structure. When learning objects are complicated, the problems, such as unsuccessful learning or a significant time required in learning, remain unsolved. Focusing on the input data during the learning stage, we undertook an experiment to identify the data that makes large errors and interferes with the learning process. Our method devides the learning process into several stages. In general, input characteristics to an output layer unit show oscillation during learning process for complicated problems. The multi-stage learning method proposes by the authors for the function approximation problems of classifying learning data in a phased manner, focusing on their learnabilities prior to learning in the multi layered neural network, and demonstrates validity of the multi-stage learning method. Specifically, this paper verifies by computer experiments that both of learning accuracy and learning time are improved of the BP method as a learning rule of the multi-stage learning method. In learning, oscillatory phenomena of a learning curve serve an important role in learning performance. The authors also discuss the occurrence mechanisms of oscillatory phenomena in learning. Furthermore, the authors discuss the reasons that errors of some data remain large value even after learning, observing behaviors during learning.

How Valid Are Our Language Test Interpretations? A Demonstrative Example

Validity is an overriding consideration in language testing. If a test score is intended for a particular purpose, this must be supported through empirical evidence. This article addresses the validity of a multiple-choice achievement test (MCT). The test is administered at the end of each semester to decide about students' mastery of a course in general English. To provide empirical evidence pertaining to the validity of this test, two criterion measures were used. In so doing, a Cloze test and a C-test which are reported to gauge general English proficiency were utilized. The results of analyses show that there is a statistically significant correlation among participants' scores on the MCT, Cloze, and Ctest. Drawing on the findings of the study, it can be cautiously deduced that these tests measure the same underlying trait. However, allowing for the limitations of using criterion measures to validate tests, we cannot make any absolute claim as to the validity of this MCT test.

Trust and Security in Electronic Payments: What We Have and Need to Know?

The growth of open networks created the interest to commercialise it. The establishment of an electronic business mechanism must be accompanied by a digital-electronic payment system to transfer the value of transactions. Financial organizations are requested to offer a secure e-payment synthesis with equivalent levels of trust and security served in conventional paper-based payment transactions. The paper addresses the challenge of the first trade problem in e-commerce, provides a brief literature review on electronic payment and attempts to explain the underlying concept and method of trust in relevance to electronic payment.

The Concept of Place and Sense of Place In Architectural Studies

Place is a where dimension formed by people-s relationship with physical settings, individual and group activities, and meanings. 'Place Attachment', 'Place Identity'and 'Sense of Place' are some concepts that could describe the quality of people-s relationships with a place. The concept of Sense of place is used in studying human-place bonding, attachment and place meaning. Sense of Place usually is defined as an overarching impression encompassing the general ways in which people feel about places, senses it, and assign concepts and values to it. Sense of place is highlighted in this article as one of the prevailing concepts among place-based researches. Considering dimensions of sense of place has always been beneficial for investigating public place attachment and pro-environmental attitudes towards these places. The creation or preservation of Sense of place is important in maintaining the quality of the environment as well as the integrity of human life within it. While many scholars argued that sense of place is a vague concept, this paper will summarize and analyze the existing seminal literature. Therefore, in this paper first the concept of Sense of place and its characteristics will be examined afterward the scales of Sense of place will be reviewed and the factors that contribute to form Sense of place will be evaluated and finally Place Attachment as an objective dimension for measuring the sense of place will be described.

Real E-Government, Real Convenience

In this paper we have suggested a new system for egovernment. In this method a government can design a precise and perfect system to control people and organizations by using five major documents. These documents contain the important information of each member of a society and help all organizations to do their informatics tasks through them. This information would be available by only a national code and a secure program would support it. The suggested system can give a good awareness to the society and help it be managed correctly.

Increasing Fishery Economic Added Value through Post Fishing Program: Cold Storage Program

The purpose of this paper is to guide the effort in improving the economic added value of Indonesian fisheries product through post fishing program, which is cold storage program. Indonesia's fisheries potential has been acknowledged by the world. FAO (2009) stated that Indonesia is one of the tenth highest producers of fishery products in the world. Based on BPS (Statistics Indonesia data), the national fisheries production in 2011 reached 5.714 million tons, which 93.55% came from marine fisheries and 6.45% from open waters. Indonesian territory consist of 2/3 of Indonesian waters, has given enormous benefits for Indonesia, especially fishermen. To improve the economic level of fishermen requires efforts to develop fisheries business unit. On of the efforts is by improving the quality of products which are marketed in the regional and international levels. It is certainly need the support of the existence of various fishery facilities (infrastructure to superstructure), one of which is cold storage. Given the many benefits of cold storage as a means of processing of fishery resources, Indonesia Maritime Security Coordinating Board (IMSCB) as one of the maritime institutions for maritime security and safety, has a program to empower the coastal community through encourages the development of cold storage in the middle and lower fishery business unit. The development of cold storage facilities which able to run its maximum role requires synergistic efforts of various parties.

Molecular Evolutionary Analysis of Yeast Protein Interaction Network

To understand life as biological system, evolutionary understanding is indispensable. Protein interactions data are rapidly accumulating and are suitable for system-level evolutionary analysis. We have analyzed yeast protein interaction network by both mathematical and biological approaches. In this poster presentation, we inferred the evolutionary birth periods of yeast proteins by reconstructing phylogenetic profile. It has been thought that hub proteins that have high connection degree are evolutionary old. But our analysis showed that hub proteins are entirely evolutionary new. We also examined evolutionary processes of protein complexes. It showed that member proteins of complexes were tend to have appeared in the same evolutionary period. Our results suggested that protein interaction network evolved by modules that form the functional unit. We also reconstructed standardized phylogenetic trees and calculated evolutionary rates of yeast proteins. It showed that there is no obvious correlation between evolutionary rates and connection degrees of yeast proteins.

Classification of Non Stationary Signals Using Ben Wavelet and Artificial Neural Networks

The automatic classification of non stationary signals is an important practical goal in several domains. An essential classification task is to allocate the incoming signal to a group associated with the kind of physical phenomena producing it. In this paper, we present a modular system composed by three blocs: 1) Representation, 2) Dimensionality reduction and 3) Classification. The originality of our work consists in the use of a new wavelet called "Ben wavelet" in the representation stage. For the dimensionality reduction, we propose a new algorithm based on the random projection and the principal component analysis.

How are Equalities Defined, Strong or Weak on a Multiple Algebra?

For the purpose of finding the quotient structure of multiple algebras such as groups, Abelian groups and rings, we will state concepts of ( strong or weak ) equalities on multiple algebras, which will lead us to research on how ( strong or weak) are equalities defined on a multiple algebra over the quotients obtained from it. In order to find a quotient structure of multiple algebras such as groups, Abelian groups and loops, a part of this article has been allocated to the concepts of equalities (strong and weak) of the defined multiple functions on multiple algebras. This leads us to do research on how defined equalities (strong and weak) are made in the multiple algebra on its resulted quotient.

Information Retrieval: Improving Question Answering Systems by Query Reformulation and Answer Validation

Question answering (QA) aims at retrieving precise information from a large collection of documents. Most of the Question Answering systems composed of three main modules: question processing, document processing and answer processing. Question processing module plays an important role in QA systems to reformulate questions. Moreover answer processing module is an emerging topic in QA systems, where these systems are often required to rank and validate candidate answers. These techniques aiming at finding short and precise answers are often based on the semantic relations and co-occurrence keywords. This paper discussed about a new model for question answering which improved two main modules, question processing and answer processing which both affect on the evaluation of the system operations. There are two important components which are the bases of the question processing. First component is question classification that specifies types of question and answer. Second one is reformulation which converts the user's question into an understandable question by QA system in a specific domain. The objective of an Answer Validation task is thus to judge the correctness of an answer returned by a QA system, according to the text snippet given to support it. For validating answers we apply candidate answer filtering, candidate answer ranking and also it has a final validation section by user voting. Also this paper described new architecture of question and answer processing modules with modeling, implementing and evaluating the system. The system differs from most question answering systems in its answer validation model. This module makes it more suitable to find exact answer. Results show that, from total 50 asked questions, evaluation of the model, show 92% improving the decision of the system.

A Novel Digital Implementation of AC Voltage Controller for Speed Control of Induction Motor

In this paper a novel, simple and reliable digital firing scheme has been implemented for speed control of three-phase induction motor using ac voltage controller. The system consists of three-phase supply connected to the three-phase induction motor via three triacs and its control circuit. The ac voltage controller has three modes of operation depending on the shape of supply current. The performance of the induction motor differs in each mode where the speed is directly proportional with firing angle in two modes and inversely in the third one. So, the control system has to detect the current mode of operation to choose the correct firing angle of triacs. Three sensors are used to feed the line currents to control system to detect the mode of operation. The control strategy is implemented using a low cost Xilinx Spartan-3E field programmable gate array (FPGA) device. Three PI-controllers are designed on FPGA to control the system in the three-modes. Simulation of the system is carried out using PSIM computer program. The simulation results show stable operation for different loading conditions especially in mode 2/3. The simulation results have been compared with the experimental results from laboratory prototype.

Analysis on Influence of Gravity on Convection Heat Transfer in Manned Spacecraft during Terrestrial Test

How to simulate experimentally the air flow and heat transfer under microgravity on the ground is important, which has not been completely solved so far. Influence of gravity on air natural convection results in convection heat transfer on ground difference from that on orbit. In order to obtain air temperature and velocity deviations of manned spacecraft during terrestrial thermal test, dimensionless number analysis and numerical simulation analysis are performed. The calculated temperature distribution and velocity distribution of the horizontal test cases are compared to the vertical cases. The results show that the influence of gravity is neglected for facility drawer racks and more obvious for vertical cabins.

Evolution of the Hydrogen Atom: An Alternative to the Big Bang Theory

Elementary particles are created in pairs of equal and opposite momentums at a reference frame at the speed of light. The speed of light reference frame is viewed as a point in space as observed by observer at rest. This point in space is the bang location of the big bang theory. The bang in the big bang theory is not more than sustained flow of pairs of positive and negative elementary particles. Electrons and negative charged elementary particles are ejected from this point in space at velocities faster than light, while protons and positively charged particles obtain velocities lower than light. Subsonic masses are found to have real and positive charge, while supersonic masses are found to be negative and imaginary indicating that the two masses are of different entities. The electron-s super-sonic speed, as viewed by rest observer was calculated and found to be less than the speed of light and is little higher than the electron speed in Bohr-s orbit. The newly formed hydrogen gas temperature was found to be in agreement with temperatures found on newly formed stars. Universe expansion was found to be in agreement. Partial mass and charge elementary particles and particles with momentum only were explained in the context of this theoretical approach.

On Pseudo-Random and Orthogonal Binary Spreading Sequences

Different pseudo-random or pseudo-noise (PN) as well as orthogonal sequences that can be used as spreading codes for code division multiple access (CDMA) cellular networks or can be used for encrypting speech signals to reduce the residual intelligence are investigated. We briefly review the theoretical background for direct sequence CDMA systems and describe the main characteristics of the maximal length, Gold, Barker, and Kasami sequences. We also discuss about variable- and fixed-length orthogonal codes like Walsh- Hadamard codes. The equivalence of PN and orthogonal codes are also derived. Finally, a new PN sequence is proposed which is shown to have certain better properties than the existing codes.

Theoretical Considerations of the Influence of Mechanical Uniaxial Stress on Pixel Readout Circuits

In this work the effects of uniaxial mechanical stress on a pixel readout circuit are theoretically analyzed. It is the effects of mechanical stress on the in-pixel transistors do not arise at the output, when a correlated double sampling circuit is used. However, mechanical stress effects on the photodiode will directly appear at the readout chain output. Therefore, compensation techniques are needed to overcome this situation. Moreover simulation technique of mechanical stress is proposed and diverse layout as well as design recommendations are put forward, in order to minimize stress related effects on the output of a circuit. he shown, that wever, Moreover, a out