Interaction of Building Stones with Inorganic Water-Soluble Salts

Interaction of inorganic water-soluble salts and building stones is studied in the paper. Two types of sandstone and one type of spongillite as representatives of materials used in historical masonry are subjected to experimental testing. Within the performed experiments, measurement of moisture and chloride concentration profiles is done in order to get input data for computational inverse analysis. Using the inverse analysis, moisture diffusivity and chloride diffusion coefficient of investigated materials are accessed. Additionally, the effect of salt presence on water vapor storage is investigated using dynamic vapor sorption device. The obtained data represents valuable information for restoration of historical masonry and give evidence on the performance of studied stones in contact with water soluble salts.

A Statistical Approach for Predicting and Optimizing Depth of Cut in AWJ Machining for 6063-T6 Al Alloy

In this paper, a set of experimental data has been used to assess the influence of abrasive water jet (AWJ) process parameters in cutting 6063-T6 aluminum alloy. The process variables considered here include nozzle diameter, jet traverse rate, jet pressure and abrasive flow rate. The effects of these input parameters are studied on depth of cut (h); one of most important characteristics of AWJ. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. In the next stage, the proposed model is embedded into a Simulated Annealing (SA) algorithm to optimize the AWJ process parameters. The objective is to determine a suitable set of process parameters that can produce a desired depth of cut, considering the ranges of the process parameters. Computational results prove the effectiveness of the proposed model and optimization procedure.

A Parametric Study: Frame Analysis Method for Masonry Arch Bridges

The predictability of masonry arch bridges and their behaviour is widely considered doubtful due to the lack of knowledge about the conditions of a given masonry arch bridge. The assessment methods for masonry arch bridges are MEXE, ARCHIE, RING and Frame Analysis Method. The material properties of the masonry and fill material are extremely difficult to determine accurately. Consequently, it is necessary to examine the effect of load dispersal angle through the fill material, the effect of variations in the stiffness of the masonry, the tensile strength of the masonry mortar continuum and the compressive strength of the masonry mortar continuum. It is also important to understand the effect of fill material on load dispersal angle to determine their influence on ratings. In this paper a series of parametric studies, to examine the sensitivity of assessment ratings to the various sets of input data required by the frame analysis method, are carried out.

Stature Estimation Using Foot and Shoeprint Length of Malaysian Population

Formulation of biological profile is one of the modern roles of forensic anthropologist. The present study was conducted to estimate height using foot and shoeprint length of Malaysian population. The present work can be very useful information in the process of identification of individual in forensic cases based on shoeprint evidence. It can help to narrow down suspects and ease the police investigation. Besides, stature is important parameters in determining the partial identify of unidentified and mutilated bodies. Thus, this study can help the problem encountered in cases of mass disaster, massacre, explosions and assault cases. This is because it is very hard to identify parts of bodies in these cases where people are dismembered and become unrecognizable. Samples in this research were collected from 200 Malaysian adults (100 males and 100 females) with age ranging from 20 to 45 years old. In this research, shoeprint length were measured based on the print of the shoes made from the flat shoes. Other information like gender, foot length and height of subject were also recorded. The data was analyzed using IBM® SPSS Statistics 19 software. Results indicated that, foot length has a strong correlation with stature than shoeprint length for both sides of the feet. However, in the unknown, where the gender was undetermined have shown a better correlation in foot length and shoeprint length parameter compared to males and females analyzed separately. In addition, prediction equations are developed to estimate the stature using linear regression analysis of foot length and shoeprint length. However, foot lengths give better prediction than shoeprint length. 

Experimental Modal Analysis and Model Validation of Antenna Structures

Numerical design optimization is a powerful tool that can be used by engineers during any stage of the design process. There are many different applications for structural optimization. A specific application that will be discussed in the following paper is experimental data matching. Data obtained through tests on a physical structure will be matched with data from a numerical model of that same structure. The data of interest will be the dynamic characteristics of an antenna structure focusing on the mode shapes and modal frequencies. The structure used was a scaled and simplified model of the Karoo Array Telescope-7 (KAT-7) antenna structure. This kind of data matching is a complex and difficult task. This paper discusses how optimization can assist an engineer during the process of correlating a finite element model with vibration test data.

Travel Time Evaluation of an Innovative U-Turn Facility on Urban Arterial Roadways

Signalized intersections on high-volume arterials are often congested during peak hours, causing a decrease in through movement efficiency on the arterial. Much of the vehicle delay incurred at conventional intersections is caused by high left-turn demand. Unconventional intersection designs attempt to reduce intersection delay and travel time by rerouting left-turns away from the main intersection and replacing it with right-turn followed by Uturn. The proposed new type of U-turn intersection is geometrically designed with a raised island which provides a protected U-turn movement. In this study several scenarios based on different distances between U-turn and main intersection, traffic volume of major/minor approaches and percentage of left-turn volumes were simulated by use of AIMSUN, a type of traffic microsimulation software. Subsequently some models are proposed in order to compute travel time of each movement. Eventually by correlating these equations to some in-field collected data of some implemented U-turn facilities, the reliability of the proposed models are approved. With these models it would be possible to calculate travel time of each movement under any kind of geometric and traffic condition. By comparing travel time of a conventional signalized intersection with U-turn intersection travel time, it would be possible to decide on converting signalized intersections into this new kind of U-turn facility or not. However comparison of travel time is not part of the scope of this research. In this paper only travel time of this innovative U-turn facility would be predicted. According to some before and after study about the traffic performance of some executed U-turn facilities, it is found that commonly, this new type of U-turn facility produces lower travel time. Thus, evaluation of using this type of unconventional intersection should be seriously considered.

Does Corporate Governance or Transparency Affect Foreign Direct Investment?

The paper investigates the relationship between the foreign direct investment (FDI) and the corporate governance or transparency by investigating the country-level FDI flows, FDI inward performance, corporate governance and transparency variables. From the regression analysis with Newey-West estimator of 28 country panel data from 1990- 2002, we find strong positive relationships between corporate governance or transparency level of hosting countries and FDI inward performance within hosting countries. A strong positive relationship is found between anti-director rights level or number of analysts of hosting countries and FDI inward performance within hosting countries. Also, we find a positive relationship between the number of analysts of hosting countries and FDI inflows. The empirical results are consistent with stock market liberalizations and corporate governance explanations of reasons for FDI.

Localisation of Anatomical Soft Tissue Landmarks of the Head in CT Images

In this paper, algorithms for the automatic localisation of two anatomical soft tissue landmarks of the head the medial canthus (inner corner of the eye) and the tragus (a small, pointed, cartilaginous flap of the ear), in CT images are describet. These landmarks are to be used as a basis for an automated image-to-patient registration system we are developing. The landmarks are localised on a surface model extracted from CT images, based on surface curvature and a rule based system that incorporates prior knowledge of the landmark characteristics. The approach was tested on a dataset of near isotropic CT images of 95 patients. The position of the automatically localised landmarks was compared to the position of the manually localised landmarks. The average difference was 1.5 mm and 0.8 mm for the medial canthus and tragus, with a maximum difference of 4.5 mm and 2.6 mm respectively.The medial canthus and tragus can be automatically localised in CT images, with performance comparable to manual localisation

On the Prediction of Transmembrane Helical Segments in Membrane Proteins Based on Wavelet Transform

The prediction of transmembrane helical segments (TMHs) in membrane proteins is an important field in the bioinformatics research. In this paper, a new method based on discrete wavelet transform (DWT) has been developed to predict the number and location of TMHs in membrane proteins. PDB coded as 1KQG was chosen as an example to describe the prediction of the number and location of TMHs in membrane proteins by using this method. To access the effect of the method, 80 proteins with known 3D-structure from Mptopo database are chosen at random as the test objects (including 325 TMHs), 308 of which can be predicted accurately, the average predicted accuracy is 96.3%. In addition, the above 80 membrane proteins are divided into 13 groups according to their function and type. In particular, the results of the prediction of TMHs of the 13 groups are satisfying.

Social Influence in the Adoption Process and Usage of Innovation: Gender Differences

The purpose of this study is to determine in what ways elementary education prospective teachers are being informed about innovations and to explain the role of social influence in the usage process of a technological innovation in terms of genders. The study group consisted of 300 prospective teachers, including 234 females and 66 males. Data have been collected by a questionnaire developed by the researchers. The result of the study showed that, while prospective teachers are being informed about innovations most frequently by mass media, they rarely seek to take expert advice. In addition, analysis of results showed that the social influence on females were significantly higher than males in usage process of a technological innovation.

Self-adaptation of Ontologies to Folksonomies in Semantic Web

Ontologies and tagging systems are two different ways to organize the knowledge present in the current Web. In this paper we propose a simple method to model folksonomies, as tagging systems, with ontologies. We show the scalability of the method using real data sets. The modeling method is composed of a generic ontology that represents any folksonomy and an algorithm to transform the information contained in folksonomies to the generic ontology. The method allows representing folksonomies at any instant of time.

A Data Hiding Model with High Security Features Combining Finite State Machines and PMM method

Recent years have witnessed the rapid development of the Internet and telecommunication techniques. Information security is becoming more and more important. Applications such as covert communication, copyright protection, etc, stimulate the research of information hiding techniques. Traditionally, encryption is used to realize the communication security. However, important information is not protected once decoded. Steganography is the art and science of communicating in a way which hides the existence of the communication. Important information is firstly hidden in a host data, such as digital image, video or audio, etc, and then transmitted secretly to the receiver.In this paper a data hiding model with high security features combining both cryptography using finite state sequential machine and image based steganography technique for communicating information more securely between two locations is proposed. The authors incorporated the idea of secret key for authentication at both ends in order to achieve high level of security. Before the embedding operation the secret information has been encrypted with the help of finite-state sequential machine and segmented in different parts. The cover image is also segmented in different objects through normalized cut.Each part of the encoded secret information has been embedded with the help of a novel image steganographic method (PMM) on different cuts of the cover image to form different stego objects. Finally stego image is formed by combining different stego objects and transmit to the receiver side. At the receiving end different opposite processes should run to get the back the original secret message.

Laplace Adomian Decomposition Method Applied to a Two-Dimensional Viscous Flow with Shrinking Sheet

Our aim in this piece of work is to demonstrate the power of the Laplace Adomian decomposition method (LADM) in approximating the solutions of nonlinear differential equations governing the two-dimensional viscous flow induced by a shrinking sheet.

Class Outliers Mining: Distance-Based Approach

In large datasets, identifying exceptional or rare cases with respect to a group of similar cases is considered very significant problem. The traditional problem (Outlier Mining) is to find exception or rare cases in a dataset irrespective of the class label of these cases, they are considered rare events with respect to the whole dataset. In this research, we pose the problem that is Class Outliers Mining and a method to find out those outliers. The general definition of this problem is “given a set of observations with class labels, find those that arouse suspicions, taking into account the class labels". We introduce a novel definition of Outlier that is Class Outlier, and propose the Class Outlier Factor (COF) which measures the degree of being a Class Outlier for a data object. Our work includes a proposal of a new algorithm towards mining of the Class Outliers, presenting experimental results applied on various domains of real world datasets and finally a comparison study with other related methods is performed.

Removal of Pb (II) from Aqueous Solutions using Fuller's Earth

Fuller’s earth is a fine-grained, naturally occurring substance that has a substantial ability to adsorb impurities. In the present study Fuller’s earth has been characterized and used for the removal of Pb(II) from aqueous solution. The effect of various physicochemical parameters such as pH, adsorbent dosage and shaking time on adsorption were studied. The result of the equilibrium studies showed that the solution pH was the key factor affecting the adsorption. The optimum pH for adsorption was 5. Kinetics data for the adsorption of Pb(II) was best described by pseudo-second order model. The effective diffusion co-efficient for Pb(II) adsorption was of the order of 10-8 m2/s. The adsorption data for metal adsorption can be well described by Langmuir adsorption isotherm. The maximum uptake of metal was 103.3 mg/g of adsorbent. Mass transfer analysis was also carried out for the adsorption process. The values of mass transfer coefficients obtained from the study indicate that the velocity of the adsorbate transport from bulk to the solid phase was quite fast. The mean sorption energy calculated from Dubinin-Radushkevich isotherm indicated that the metal adsorption process was chemical in nature. 

An Approach to Improvement of Information Integrity in Key Areas of Portfolio Management

At a time of growing market turbulence and a strong shifts towards increasingly complex risk models and more stringent audit requirements, it is more critical than ever to maintain the highest quality of financial and credit information. IFC implemented an approach that helps increase data integrity and quality significantly. This approach is called “Screening". Screening is based on linking information from different sources to identify potential inconsistencies in key financial and credit data. That, in turn, can help to ease the trials of portfolio supervision, and improve overall company global reporting and assessment systems. IFC experience showed that when used regularly, Screening led to improved information.

Roughness Effects on Nucleate Pool Boiling of R-113 on Horizontal Circular Copper Surfaces

The present paper is an experimental investigation of roughness effects on nucleate pool boiling of refrigerant R113 on horizontal circular copper surfaces. The copper samples were treated by different sand paper grit sizes to achieve different surface roughness. The average surface roughness of the four samples was 0.901, 0.735, 0.65, and 0.09, respectively. The experiments were performed in the heat flux range of 8 to 200kW/m2. The heat transfer coefficient was calculated by measuring wall superheat of the samples and the input heat flux. The results show significant improvement of heat transfer coefficient as the surface roughness is increased. It is found that the heat transfer coefficient of the sample with Ra=0.901 is 3.4, 10.5, and 38.5% higher in comparison with surfaces with Ra of 0.735, 0.65, and 0.09 at heat flux of 170 kW/m2. Moreover, the results are compared with literature data and the well known Cooper correlation.

An Estimation of the Performance of HRLS Algorithm

The householder RLS (HRLS) algorithm is an O(N2) algorithm which recursively updates an arbitrary square-root of the input data correlation matrix and naturally provides the LS weight vector. A data dependent householder matrix is applied for such an update. In this paper a recursive estimate of the eigenvalue spread and misalignment of the algorithm is presented at a very low computational cost. Misalignment is found to be highly sensitive to the eigenvalue spread of input signals, output noise of the system and exponential window. Simulation results show noticeable degradation in the misalignment by increase in eigenvalue spread as well as system-s output noise, while exponential window was kept constant.

On-Time Performance and Service Regularity of Stage Buses in Mixed Traffic

Stage bus operated in the mixed traffic might always meet many problems about low quality and reliability of services. The low quality and reliability of bus service can make the system not attractive and directly reduce the interest of using bus service. This paper presents the result of field investigation and analysis of on-time performance and service regularity of stage bus in mixed traffic. Data for analysis was collected from the field by on-board observation along the Ipoh-Lumut corridor in Perak, Malaysia. From analysis and discussion, it can be concluded that on-time performance and service regularity varies depend on station, typical day, time period, operation characteristics of bus and characteristics of traffic. The on-time performance and service regularity of stage bus in mixed traffic can be derived by using data collected by onboard survey. It is clear that on-time performance and service regularity of the existing stage bus system was low.

Evaluation of Fuzzy ARTMAP with DBSCAN in VLSI Application

The various applications of VLSI circuits in highperformance computing, telecommunications, and consumer electronics has been expanding progressively, and at a very hasty pace. This paper describes a new model for partitioning a circuit using DBSCAN and fuzzy ARTMAP neural network. The first step is concerned with feature extraction, where we had make use DBSCAN algorithm. The second step is the classification and is composed of a fuzzy ARTMAP neural network. The performance of both approaches is compared using benchmark data provided by MCNC standard cell placement benchmark netlists. Analysis of the investigational results proved that the fuzzy ARTMAP with DBSCAN model achieves greater performance then only fuzzy ARTMAP in recognizing sub-circuits with lowest amount of interconnections between them The recognition rate using fuzzy ARTMAP with DBSCAN is 97.7% compared to only fuzzy ARTMAP.