Lateral Pressure in Squat Silos under Eccentric Discharge

The influence of eccentric discharge of stored solids in squat silos has been highly valued by many researchers. However, calculation method of lateral pressure under eccentric flowing still needs to be deeply studied. In particular, the lateral pressure distribution on vertical wall could not be accurately recognized mainly because of its asymmetry. In order to build mechanical model of lateral pressure, flow channel and flow pattern of stored solids in squat silo are studied. In this passage, based on Janssen-s theory, the method for calculating lateral static pressure in squat silos after eccentric discharge is proposed. Calculative formulae are deduced for each of three possible cases. This method is also focusing on unsymmetrical distribution characteristic of silo wall normal pressure. Finite element model is used to analysis and compare the results of lateral pressure and the numerical results illustrate the practicability of the theoretical method.

Understanding E-Learning Satisfaction in the Context of University Teachers

The present study was designed to test the influence of confirmed expectations, perceived usefulness and perceived competence on e-learning satisfaction among university teachers. A questionnaire was completed by 125 university teachers from 12 different universities in Norway. We found that 51% of the variance in university teachers- satisfaction with e-learning could be explained by the three proposed antecedents. Perceived usefulness seems to be the most important predictor of teachers- satisfaction with e-learning.

A Genetic Algorithm for Clustering on Image Data

Clustering is the process of subdividing an input data set into a desired number of subgroups so that members of the same subgroup are similar and members of different subgroups have diverse properties. Many heuristic algorithms have been applied to the clustering problem, which is known to be NP Hard. Genetic algorithms have been used in a wide variety of fields to perform clustering, however, the technique normally has a long running time in terms of input set size. This paper proposes an efficient genetic algorithm for clustering on very large data sets, especially on image data sets. The genetic algorithm uses the most time efficient techniques along with preprocessing of the input data set. We test our algorithm on both artificial and real image data sets, both of which are of large size. The experimental results show that our algorithm outperforms the k-means algorithm in terms of running time as well as the quality of the clustering.

IPSO Based UPFC Robust Output Feedback Controllers for Damping of Low Frequency Oscillations

On the basis of the linearized Phillips-Herffron model of a single-machine power system, a novel method for designing unified power flow controller (UPFC) based output feedback controller is presented. The design problem of output feedback controller for UPFC is formulated as an optimization problem according to with the time domain-based objective function which is solved by iteration particle swarm optimization (IPSO) that has a strong ability to find the most optimistic results. To ensure the robustness of the proposed damping controller, the design process takes into account a wide range of operating conditions and system configurations. The simulation results prove the effectiveness and robustness of the proposed method in terms of a high performance power system. The simulation study shows that the designed controller by Iteration PSO performs better than Classical PSO in finding the solution.

Face Image Coding Using Face Prototyping

In this paper we present a novel approach for face image coding. The proposed method makes a use of the features of video encoders like motion prediction. At first encoder selects appropriate prototype from the database and warps it according to features of encoding face. Warped prototype is placed as first I frame. Encoding face is placed as second frame as P frame type. Information about features positions, color change, selected prototype and data flow of P frame will be sent to decoder. The condition is both encoder and decoder own the same database of prototypes. We have run experiment with H.264 video encoder and obtained results were compared to results achieved by JPEG and JPEG2000. Obtained results show that our approach is able to achieve 3 times lower bitrate and two times higher PSNR in comparison with JPEG. According to comparison with JPEG2000 the bitrate was very similar, but subjective quality achieved by proposed method is better.

A Study of Touching Characters in Degraded Gurmukhi Text

Character segmentation is an important preprocessing step for text recognition. In degraded documents, existence of touching characters decreases recognition rate drastically, for any optical character recognition (OCR) system. In this paper a study of touching Gurmukhi characters is carried out and these characters have been divided into various categories after a careful analysis.Structural properties of the Gurmukhi characters are used for defining the categories. New algorithms have been proposed to segment the touching characters in middle zone. These algorithms have shown a reasonable improvement in segmenting the touching characters in degraded Gurmukhi script. The algorithms proposed in this paper are applicable only to machine printed text.

Architecting a Knowledge Theatre

This paper describes the architectural design considerations for building a new class of application, a Personal Knowledge Integrator and a particular example a Knowledge Theatre. It then supports this description by describing a scenario of a child acquiring knowledge and how this process could be augmented by the proposed architecture and design of a Knowledge Theatre. David Merrill-s first “principles of instruction" are kept in focus to provide a background to view the learning potential.

Effect of Dietary Linseed Oil Soap on Lamb Meat

Theexperiment was carried out with 2x5 male Merino lambs raised under intensive conditions to investigate the effect of dietary calcium soap of linseed oil on the color and fatty acid composition of longissimusdorsi muscle. Control lambs fed a basal diet and the experimental lambs consumed a diet supplemented with 3% calcium soap of linseed oil. The color values (L*, a*, b* a*/b* and chroma) were not influenced by dietary treatment. The MUFA proportion reduced, SFA and PUFA content did not alter. As expected, the linolenic (C18:3 n3) and thusthe n-3 content significantly improved by linseed supplement (0.47 and 0.81; 0.78 and 1.16 in control and in experimental samples, respectively). Other n-3 and n-6 fatty acids had similar valuestocontrol samples. The n- 6/n-3 ratio was significantly narrower in the experimental group (6.31 vs. 9.38) but the P/S ratio did not differ betweenthe two groups.In conclusion calcium soap of linseed oil seems to be a suitable supplement form of n-3 fatty acids to improve the nutritive value of lamb meat.

Harnessing Replication in Object Allocation

The design of distributed systems involves the partitioning of the system into components or partitions and the allocation of these components to physical nodes. Techniques have been proposed for both the partitioning and allocation process. However these techniques suffer from a number of limitations. For instance object replication has the potential to greatly improve the performance of an object orientated distributed system but can be difficult to use effectively and there are few techniques that support the developer in harnessing object replication. This paper presents a methodological technique that helps developers decide how objects should be allocated in order to improve performance in a distributed system that supports replication. The performance of the proposed technique is demonstrated and tested on an example system.

Motion Planning and Control of Autonomous Robots in a Two-dimensional Plane

This paper proposes a solution to the motion planning and control problem of a point-mass robot which is required to move safely to a designated target in a priori known workspace cluttered with fixed elliptical obstacles of arbitrary position and sizes. A tailored and unique algorithm for target convergence and obstacle avoidance is proposed that will work for any number of fixed obstacles. The control laws proposed in this paper also ensures that the equilibrium point of the given system is asymptotically stable. Computer simulations with the proposed technique and applications to a planar (RP) manipulator will be presented.

Application-Specific Instruction Sets Processor with Implicit Registers to Improve Register Bandwidth

Application-Specific Instruction (ASI ) set Processors (ASIP) have become an important design choice for embedded systems due to runtime flexibility, which cannot be provided by custom ASIC solutions. One major bottleneck in maximizing ASIP performance is the limitation on the data bandwidth between the General Purpose Register File (GPRF) and ASIs. This paper presents the Implicit Registers (IRs) to provide the desirable data bandwidth. An ASI Input/Output model is proposed to formulate the overheads of the additional data transfer between the GPRF and IRs, therefore, an IRs allocation algorithm is used to achieve the better performance by minimizing the number of extra data transfer instructions. The experiment results show an up to 3.33x speedup compared to the results without using IRs.

Comments on He et al.’s Robust Biometric-based User Authentication Scheme for WSNs

In order to guarantee secure communication for wireless sensor networks (WSNs), many user authentication schemes have successfully drawn researchers- attention and been studied widely. In 2012, He et al. proposed a robust biometric-based user authentication scheme for WSNs. However, this paper demonstrates that He et al.-s scheme has some drawbacks: poor reparability problem, user impersonation attack, and sensor node impersonate attack.

Development of a Tunisian Measurement Scale for Patient Satisfaction: Study case in Tunisian Private Clinics

The aim of this research is to propose a Measurement Scale for Patient Satisfaction (MSPS) in the context of Tunisian private clinics. This scale is developed using value management methods and is validated by statistic tools with SPSS.

The Content Based Objective Metrics for Video Quality Evaluation

In this paper we proposed comparison of four content based objective metrics with results of subjective tests from 80 video sequences. We also include two objective metrics VQM and SSIM to our comparison to serve as “reference” objective metrics because their pros and cons have already been published. Each of the video sequence was preprocessed by the region recognition algorithm and then the particular objective video quality metric were calculated i.e. mutual information, angular distance, moment of angle and normalized cross-correlation measure. The Pearson coefficient was calculated to express metrics relationship to accuracy of the model and the Spearman rank order correlation coefficient to represent the metrics relationship to monotonicity. The results show that model with the mutual information as objective metric provides best result and it is suitable for evaluating quality of video sequences.

Detection and Classification of Faults on Parallel Transmission Lines Using Wavelet Transform and Neural Network

The protection of parallel transmission lines has been a challenging task due to mutual coupling between the adjacent circuits of the line. This paper presents a novel scheme for detection and classification of faults on parallel transmission lines. The proposed approach uses combination of wavelet transform and neural network, to solve the problem. While wavelet transform is a powerful mathematical tool which can be employed as a fast and very effective means of analyzing power system transient signals, artificial neural network has a ability to classify non-linear relationship between measured signals by identifying different patterns of the associated signals. The proposed algorithm consists of time-frequency analysis of fault generated transients using wavelet transform, followed by pattern recognition using artificial neural network to identify the type of the fault. MATLAB/Simulink is used to generate fault signals and verify the correctness of the algorithm. The adaptive discrimination scheme is tested by simulating different types of fault and varying fault resistance, fault location and fault inception time, on a given power system model. The simulation results show that the proposed scheme for fault diagnosis is able to classify all the faults on the parallel transmission line rapidly and correctly.

Suppression of Narrowband Interference in Impulse Radio Based High Data Rate UWB WPAN Communication System Using NLOS Channel Model

Study on suppression of interference in time domain equalizers is attempted for high data rate impulse radio (IR) ultra wideband communication system. The narrow band systems may cause interference with UWB devices as it is having very low transmission power and the large bandwidth. SRAKE receiver improves system performance by equalizing signals from different paths. This enables the use of SRAKE receiver techniques in IRUWB systems. But Rake receiver alone fails to suppress narrowband interference (NBI). A hybrid SRake-MMSE time domain equalizer is proposed to overcome this by taking into account both the effect of the number of rake fingers and equalizer taps. It also combats intersymbol interference. A semi analytical approach and Monte-Carlo simulation are used to investigate the BER performance of SRAKEMMSE receiver on IEEE 802.15.3a UWB channel models. Study on non-line of sight indoor channel models (both CM3 and CM4) illustrates that bit error rate performance of SRake-MMSE receiver with NBI performs better than that of Rake receiver without NBI. We show that for a MMSE equalizer operating at high SNR-s the number of equalizer taps plays a more significant role in suppressing interference.

An Exact Solution to Support Vector Mixture

This paper presents a new version of the SVM mixture algorithm initially proposed by Kwok for classification and regression problems. For both cases, a slight modification of the mixture model leads to a standard SVM training problem, to the existence of an exact solution and allows the direct use of well known decomposition and working set selection algorithms. Only the regression case is considered in this paper but classification has been addressed in a very similar way. This method has been successfully applied to engine pollutants emission modeling.

An Asymptotic Solution for the Free Boundary Parabolic Equations

In this paper, we investigate the solution of a two dimensional parabolic free boundary problem. The free boundary of this problem is modelled as a nonlinear integral equation (IE). For this integral equation, we propose an asymptotic solution as time is near to maturity and develop an integral iterative method. The computational results reveal that our asymptotic solution is very close to the numerical solution as time is near to maturity.

Behavioral Modeling Accuracy for RF Power Amplifier with Memory Effects

In this paper, a system level behavioural model for RF power amplifier, which exhibits memory effects, and based on multibranch system is proposed. When higher order terms are included, the memory polynomial model (MPM) exhibits numerical instabilities. A set of memory orthogonal polynomial model (OMPM) is introduced to alleviate the numerical instability problem associated to MPM model. A data scaling and centring algorithm was applied to improve the power amplifier modeling accuracy. Simulation results prove that the numerical instability can be greatly reduced, as well as the model precision improved with nonlinear model.

Recursive Algorithms for Image Segmentation Based on a Discriminant Criterion

In this study, a new criterion for determining the number of classes an image should be segmented is proposed. This criterion is based on discriminant analysis for measuring the separability among the segmented classes of pixels. Based on the new discriminant criterion, two algorithms for recursively segmenting the image into determined number of classes are proposed. The proposed methods can automatically and correctly segment objects with various illuminations into separated images for further processing. Experiments on the extraction of text strings from complex document images demonstrate the effectiveness of the proposed methods.1