Effect of Silver Nanoparticles Size Prepared by Photoreduction Method on Optical Absorption Spectra of TiO2/Ag/N719 Dye Composite Films

TiO2/Ag composite films were prepared by incorporating Ag in the pores of mesoporous TiO2 films using a photoreduction method. The Ag nanoparticle sizes were in a range of 3.66-38.56 nm. The TiO2/Ag composite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscropy (TEM). The TiO2 films and TiO2/Ag composite films were immersed in a 0.3 mM N719 dye solution and characterized by UV-Vis spectrophotometer. The TiO2/Ag/N719 composite film showed that an optimal size of Ag nanoparticles was 19.12 nm and, hence, gave the maximum optical absorption spectra. The improved absorption was due to surface plasmon resonance induced by the Ag nanoparticles to enhance the absorption coefficient of the dye.

Modeling Language for Constructing Solvers in Machine Learning: Reductionist Perspectives

For a given specific problem an efficient algorithm has been the matter of study. However, an alternative approach orthogonal to this approach comes out, which is called a reduction. In general for a given specific problem this reduction approach studies how to convert an original problem into subproblems. This paper proposes a formal modeling language to support this reduction approach in order to make a solver quickly. We show three examples from the wide area of learning problems. The benefit is a fast prototyping of algorithms for a given new problem. It is noted that our formal modeling language is not intend for providing an efficient notation for data mining application, but for facilitating a designer who develops solvers in machine learning.

Wireless Distributed Load-Shedding Management System for Non-Emergency Cases

In this paper, we present a cost-effective wireless distributed load shedding system for non-emergency scenarios. In power transformer locations where SCADA system cannot be used, the proposed solution provides a reasonable alternative that combines the use of microcontrollers and existing GSM infrastructure to send early warning SMS messages to users advising them to proactively reduce their power consumption before system capacity is reached and systematic power shutdown takes place. A novel communication protocol and message set have been devised to handle the messaging between the transformer sites, where the microcontrollers are located and where the measurements take place, and the central processing site where the database server is hosted. Moreover, the system sends warning messages to the endusers mobile devices that are used as communication terminals. The system has been implemented and tested via different experimental results.

Secure Block-Based Video Authentication with Localization and Self-Recovery

Because of the great advance in multimedia technology, digital multimedia is vulnerable to malicious manipulations. In this paper, a public key self-recovery block-based video authentication technique is proposed which can not only precisely localize the alteration detection but also recover the missing data with high reliability. In the proposed block-based technique, multiple description coding MDC is used to generate two codes (two descriptions) for each block. Although one block code (one description) is enough to rebuild the altered block, the altered block is rebuilt with better quality by the two block descriptions. So using MDC increases the ratability of recovering data. A block signature is computed using a cryptographic hash function and a doubly linked chain is utilized to embed the block signature copies and the block descriptions into the LSBs of distant blocks and the block itself. The doubly linked chain scheme gives the proposed technique the capability to thwart vector quantization attacks. In our proposed technique , anyone can check the authenticity of a given video using the public key. The experimental results show that the proposed technique is reliable for detecting, localizing and recovering the alterations.

Taiwan Sugar Corporation's Participation in the Mechanism of Payment for Environmental Services (PES)

The Taiwan government has started to promote the “Plain Landscape Afforestation and Greening Program" since 2002. A key task of the program was the payment for environmental services (PES), entitled the “Plain Landscape Afforestation Policy" (PLAP), which was certificated by the Executive Yuan on August 31, 2001 and enacted on January 1, 2002. According to the policy, it is estimated that the total area of afforestation will be 25,100 hectares by December 31, 2007. Until the end of 2007, the policy had been enacted for six years in total and the actual area of afforestation was 8,919.18 hectares. Among them, Taiwan Sugar Corporation (TSC) was accounted for 7,960 hectares (with 2,450.83 hectares as public service area) which occupied 86.22% of the total afforestation area; the private farmland promoted by local governments was accounted for 869.18 hectares which occupied 9.75% of the total afforestation area. Based on the above, we observe that most of the afforestation area in this policy is executed by TSC, and the achievement ratio by TSC is better than by others. It implies that the success of the PLAP is seriously related to the execution of TSC. The objective of this study is to analyze the relevant policy planning of TSC's participation in the PLAP, suggest complementary measures, and draw up effective adjustment mechanisms, so as to improve the effectiveness of executing the policy. Our main conclusions and suggestions are summarized as follows: 1. The main reason for TSC’s participation in the PLAP is based on their passive cooperation with the central government or company policy. Prior to TSC’s participation in the PLAP, their lands were mainly used for growing sugarcane. 2. The main factors of TSC's consideration on the selection of tree species are based on the suitability of land and species. The largest proportion of tree species is allocated to economic forests, and the lack of technical instruction was the main problem during afforestation. Moreover, the method of improving TSC’s future development in leisure agriculture and landscape business becomes a key topic. 3. TSC has developed short and long-term plans on participating in the PLAP for the future. However, there is no great willingness or incentive on budgeting for such detailed planning. 4. Most people from TSC interviewed consider the requirements on PLAP unreasonable. Among them, an unreasonable requirement on the number of trees accounted for the greatest proportion; furthermore, most interviewees suggested that the government should continue to provide incentives even after 20 years. 5. Since the government shares the same goals as TSC, there should be sufficient cooperation and communication that support the technical instruction and reduction of afforestation cost, which will also help to improve effectiveness of the policy.

A Fast HRRP Synthesis Algorithm with Sensing Dictionary in GTD Model

In the paper, a fast high-resolution range profile synthetic algorithm called orthogonal matching pursuit with sensing dictionary (OMP-SD) is proposed. It formulates the traditional HRRP synthetic to be a sparse approximation problem over redundant dictionary. As it employs a priori that the synthetic range profile (SRP) of targets are sparse, SRP can be accomplished even in presence of data lost. Besides, the computation complexity decreases from O(MNDK) flops for OMP to O(M(N + D)K) flops for OMP-SD by introducing sensing dictionary (SD). Simulation experiments illustrate its advantages both in additive white Gaussian noise (AWGN) and noiseless situation, respectively.

Design and Simulation Interface Circuit for Piezoresistive Accelerometers with Offset Cancellation Ability

This paper presents a new method for read out of the piezoresistive accelerometer sensors. The circuit works based on Instrumentation amplifier and it is useful for reducing offset In Wheatstone Bridge. The obtained gain is 645 with 1μv/°c Equivalent drift and 1.58mw power consumption. A Schmitt trigger and multiplexer circuit control output node. a high speed counter is designed in this work .the proposed circuit is designed and simulated In 0.18μm CMOS technology with 1.8v power supply.

GPI Observer-based Tracking Control and Synchronization of Chaotic Systems

Based on general proportional integral (GPI) observers and sliding mode control technique, a robust control method is proposed for the master-slave synchronization of chaotic systems in the presence of parameter uncertainty and with partially measurable output signal. By using GPI observer, the master dynamics are reconstructed by the observations from a measurable output under the differential algebraic framework. Driven by the signals provided by GPI observer, a sliding mode control technique is used for the tracking control and synchronization of the master-slave dynamics. The convincing numerical results reveal the proposed method is effective, and successfully accommodate the system uncertainties, disturbances, and noisy corruptions.

Coordinated Design of TCSC Controller and PSS Employing Particle Swarm Optimization Technique

This paper investigates the application of Particle Swarm Optimization (PSO) technique for coordinated design of a Power System Stabilizer (PSS) and a Thyristor Controlled Series Compensator (TCSC)-based controller to enhance the power system stability. The design problem of PSS and TCSC-based controllers is formulated as a time domain based optimization problem. PSO algorithm is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. To compare the capability of PSS and TCSC-based controller, both are designed independently first and then in a coordinated manner for individual and coordinated application. The proposed controllers are tested on a weakly connected power system. The eigenvalue analysis and non-linear simulation results are presented to show the effectiveness of the coordinated design approach over individual design. The simulation results show that the proposed controllers are effective in damping low frequency oscillations resulting from various small disturbances like change in mechanical power input and reference voltage setting.

Fuzzy Scan Method to Detect Clusters

The classical temporal scan statistic is often used to identify disease clusters. In recent years, this method has become as a very popular technique and its field of application has been notably increased. Many bioinformatic problems have been solved with this technique. In this paper a new scan fuzzy method is proposed. The behaviors of classic and fuzzy scan techniques are studied with simulated data. ROC curves are calculated, being demonstrated the superiority of the fuzzy scan technique.

Classification Influence Index and its Application for k-Nearest Neighbor Classifier

Classification is an important topic in machine learning and bioinformatics. Many datasets have been introduced for classification tasks. A dataset contains multiple features, and the quality of features influences the classification accuracy of the dataset. The power of classification for each feature differs. In this study, we suggest the Classification Influence Index (CII) as an indicator of classification power for each feature. CII enables evaluation of the features in a dataset and improved classification accuracy by transformation of the dataset. By conducting experiments using CII and the k-nearest neighbor classifier to analyze real datasets, we confirmed that the proposed index provided meaningful improvement of the classification accuracy.

Transmitter Macrodiversity in Multihopping- SFN Based Algorithm for Improved Node Reachability and Robust Routing

A novel idea presented in this paper is to combine multihop routing with single-frequency networks (SFNs) for a broadcasting scenario. An SFN is a set of multiple nodes that transmit the same data simultaneously, resulting in transmitter macrodiversity. Two of the most important performance factors of multihop networks, node reachability and routing robustness, are analyzed. Simulation results show that our proposed SFN-D routing algorithm improves the node reachability by 37 percentage points as compared to non-SFN multihop routing. It shows a diversity gain of 3.7 dB, meaning that 3.7 dB lower transmission powers are required for the same reachability. Even better results are possible for larger networks. If an important node becomes inactive, this algorithm can find new routes that a non-SFN scheme would not be able to find. Thus, two of the major problems in multihopping are addressed; achieving robust routing as well as improving node reachability or reducing transmission power.

Clustering Multivariate Empiric Characteristic Functions for Multi-Class SVM Classification

A dissimilarity measure between the empiric characteristic functions of the subsamples associated to the different classes in a multivariate data set is proposed. This measure can be efficiently computed, and it depends on all the cases of each class. It may be used to find groups of similar classes, which could be joined for further analysis, or it could be employed to perform an agglomerative hierarchical cluster analysis of the set of classes. The final tree can serve to build a family of binary classification models, offering an alternative approach to the multi-class SVM problem. We have tested this dendrogram based SVM approach with the oneagainst- one SVM approach over four publicly available data sets, three of them being microarray data. Both performances have been found equivalent, but the first solution requires a smaller number of binary SVM models.

Dynamic TDMA Slot Reservation Protocol for QoS Provisioning in Cognitive Radio Ad Hoc Networks

In this paper, we propose a dynamic TDMA slot reservation (DTSR) protocol for cognitive radio ad hoc networks. Quality of Service (QoS) guarantee plays a critically important role in such networks. We consider the problem of providing QoS guarantee to users as well as to maintain the most efficient use of scarce bandwidth resources. According to one hop neighboring information and the bandwidth requirement, our proposed protocol dynamically changes the frame length and the transmission schedule. A dynamic frame length expansion and shrinking scheme that controls the excessive increase of unassigned slots has been proposed. This method efficiently utilizes the channel bandwidth by assigning unused slots to new neighboring nodes and increasing the frame length when the number of slots in the frame is insufficient to support the neighboring nodes. It also shrinks the frame length when half of the slots in the frame of a node are empty. An efficient slot reservation protocol not only guarantees successful data transmissions without collisions but also enhance channel spatial reuse to maximize the system throughput. Our proposed scheme, which provides both QoS guarantee and efficient resource utilization, be employed to optimize the channel spatial reuse and maximize the system throughput. Extensive simulation results show that the proposed mechanism achieves desirable performance in multichannel multi-rate cognitive radio ad hoc networks.

Trust and Reliability for Public Sector Data

The public sector holds large amounts of data of various areas such as social affairs, economy, or tourism. Various initiatives such as Open Government Data or the EU Directive on public sector information aim to make these data available for public and private service providers. Requirements for the provision of public sector data are defined by legal and organizational frameworks. Surprisingly, the defined requirements hardly cover security aspects such as integrity or authenticity. In this paper we discuss the importance of these missing requirements and present a concept to assure the integrity and authenticity of provided data based on electronic signatures. We show that our concept is perfectly suitable for the provisioning of unaltered data. We also show that our concept can also be extended to data that needs to be anonymized before provisioning by incorporating redactable signatures. Our proposed concept enhances trust and reliability of provided public sector data.

Extended “2D-RIB“ for Impression-Based Satisfactory Retrieval and its Evaluation

Recently, lots of researchers are attracted to retrieving multimedia database by using some impression words and their values. Ikezoe-s research is one of the representatives and uses eight pairs of opposite impression words. We had modified its retrieval interface and proposed '2D-RIB' in the previous work. The aim of the present paper is to improve his/her satisfaction level to the retrieval result in the 2D-RIB. Our method is to extend the 2D-RIB. One of our extensions is to define and introduce the following two measures: 'melody goodness' and 'general acceptance'. Another extension is three types of customization menus. The result of evaluation using a pilot system is as follows. Both of these two measures 'melody goodness' and -general acceptance- can contribute to the improvement. Moreover, it is effective if we introduce the customization menu which enables a retrieval person to reduce the strictness level of retrieval condition in an impression pair based on his/her need.

A Fuzzy Model and Tool to Analyze SIVD Diseases Using TMS

The paper proposes a methodology to process the signals coming from the Transcranial Magnetic Stimulation (TMS) in order to identify the pathology and evaluate the therapy to treat the patients affected by demency diseases. In particular, a fuzzy model is developed to identify the demency of the patients affected by Subcortical Ischemic Vascular Dementia and to measure the positive effect, if any, of a repetitive TMS on their motor performances. A tool is also presented to support the mentioned analysis.

Generating Speq Rules based on Automatic Proof of Logical Equivalence

In the Equivalent Transformation (ET) computation model, a program is constructed by the successive accumulation of ET rules. A method by meta-computation by which a correct ET rule is generated has been proposed. Although the method covers a broad range in the generation of ET rules, all important ET rules are not necessarily generated. Generation of more ET rules can be achieved by supplementing generation methods which are specialized for important ET rules. A Specialization-by-Equation (Speq) rule is one of those important rules. A Speq rule describes a procedure in which two variables included in an atom conjunction are equalized due to predicate constraints. In this paper, we propose an algorithm that systematically and recursively generate Speq rules and discuss its effectiveness in the synthesis of ET programs. A Speq rule is generated based on proof of a logical formula consisting of given atom set and dis-equality. The proof is carried out by utilizing some ET rules and the ultimately obtained rules in generating Speq rules.

Improving Classification in Bayesian Networks using Structural Learning

Naïve Bayes classifiers are simple probabilistic classifiers. Classification extracts patterns by using data file with a set of labeled training examples and is currently one of the most significant areas in data mining. However, Naïve Bayes assumes the independence among the features. Structural learning among the features thus helps in the classification problem. In this study, the use of structural learning in Bayesian Network is proposed to be applied where there are relationships between the features when using the Naïve Bayes. The improvement in the classification using structural learning is shown if there exist relationship between the features or when they are not independent.

A Mapping Approach of Code Generation for Arinc653-Based Avionics Software

Avionic software architecture has transit from a federated avionics architecture to an integrated modular avionics (IMA) .ARINC 653 (Avionics Application Standard Software Interface) is a software specification for space and time partitioning in Safety-critical avionics Real-time operating systems. Methods to transform the abstract avionics application logic function to the executable model have been brought up, however with less consideration about the code generating input and output model specific for ARINC 653 platform and inner-task synchronous dynamic interaction order sequence. In this paper, we proposed an AADL-based model-driven design methodology to fulfill the purpose to automatically generating Cµ executable model on ARINC 653 platform from the ARINC653 architecture which defined as AADL653 in order to facilitate the development of the avionics software constructed on ARINC653 OS. This paper presents the mapping rules between the AADL653 elements and the elements in Cµ language, and define the code generating rules , designs an automatic C µ code generator .Then, we use a case to illustrate our approach. Finally, we give the related work and future research directions.