Response of Chickpea Genotypes to Drought

Water is the main component of biological processes. Water management is important to obtain higher productivity. In this study, some of the yield components were investigated together with different drought levels. Four chickpea genotypes (CDC Frontier, CDC Luna, Sawyer and Sierra) were grown in pots with 3 different irrigation levels (a dose of 17.5 ml, 35 ml and 70 ml for each pot per day) after three weeks from sowing. In the research, flowering, pod set, pod per plant, fertile pod, double seed/pod, stem diameter, plant weight, seed per plant, 1000 seed weight, seed diameter, vegetation length and weekly plant height were measured. Consequently, significant differences were observed on all the investigated characteristics owing to genotypes (except double seed/pod and stem diameter), water levels (except first pod, seed weight and height on 3rd week) and genotype x water level interaction (except first pod, double seed/pod, seed weight and height).

Challenges of Irrigation Water Supply in Croplands of Arid Regions and their Environmental Consequences – A Case Study in the Dez and Moghan Command Areas of Iran

Renewable water resources are crucial production variables in arid and semi-arid regions where intensive agriculture is practiced to meet ever-increasing demand for food and fiber. This is crucial for the Dez and Moghan command areas where water delivery problems and adverse environmental issues are widespread. This paper aims to identify major problems areas using on-farm surveys of 200 farmers, agricultural extensionists and water suppliers which was complemented by secondary data and field observations during 2010- 2011 cultivating season. The SPSS package was used to analyze and synthesis data. Results indicated inappropriate canal operations in both schemes, though there was no unanimity about the underlying causes. Inequitable and inflexible distribution was found to be rooted in deficient hydraulic structures particularly in the main and secondary canals. The inadequacy and inflexibility of water scheduling regime was the underlying causes of recurring pest and disease spread which often led to the decline of crop yield and quality, although these were not disputed, the water suppliers were not prepared to link with the deficiencies in the operation of the main and secondary canals. They rather attributed these to the prevailing salinity; alkalinity, water table fluctuations and leaching of the valuable agro-chemical inputs from the plants- route zone with farreaching consequences. Examples of these include the pollution of ground and surface resources due to over-irrigation at the farm level which falls under the growers- own responsibility. Poor irrigation efficiency and adverse environmental problems were attributed to deficient and outdated farming practices that were in turn rooted in poor extension programs and irrational water charges.

Heat Flux Reduction Research in Hypersonic Flow with Opposing Jet

A CFD study on heat flux reduction in hypersonic flow with opposing jet has been conducted. Flowfield parameters, reattachment point position, surface pressure distributions and heat flux distributions are obtained and validated with experiments. The physical mechanism of heat reduction has been analyzed. When the opposing jet blows, the freestream is blocked off, flows to the edges and not interacts with the surface to form aerodynamic heating. At the same time, the jet flows back to form cool recirculation region, which reduces the difference in temperature between the surface and the nearby gas, and then reduces the heat flux. As the pressure ratio increases, the interface between jet and freestream is gradually pushed away from the surface. Larger the total pressure ratio is, lower the heat flux is. To study the effect of the intensity of opposing jet more reasonably, a new parameter RPA has been introduced by combining the flux and the total pressure ratio. The study shows that the same shock wave position and total heat load can be obtained with the same RPA with different fluxes and the total pressures, which means the new parameter could stand for the intensity of opposing jet and could be used to analyze the influence of opposing jet on flow field and aerodynamic heating.

Glutamic Acid Production from Potato by Brevibacterium linens

In this study, the possibility of using potato as a substrate for glutamic acid production by Brevibacterium linens was investigated. For preparation of fermentation medium, potato was hydrolyzed by hydrochloridric acid. The medium contained potato hydrolysate, tween 80, mineral solution, glucose, and potassium hydrogen phosphate. The initial pH of the medium was adjusted to 7-7.5. For achieving the optimum time with maximum yield, the beakers containing the medium and the inoculums were incubated in a rotary water bath flask shaker for one to five days. Thin layer choromatography was used for quantitative and qualitative assay of the glutamic acid produced. The results revealed that as fermentation time increased, pH of the fermentation medium significantly decreased (P

A Methodological Approach for Detecting Burst Noise in the Time Domain

The burst noise is a kind of noises that are destructive and frequently found in semiconductor devices and ICs, yet detecting and removing the noise has proved challenging for IC designers or users. According to the properties of burst noise, a methodological approach is presented (proposed) in the paper, by which the burst noise can be analysed and detected in time domain. In this paper, principles and properties of burst noise are expounded first, Afterwards, feasibility (viable) of burst noise detection by means of wavelet transform in the time domain is corroborated in the paper, and the multi-resolution characters of Gaussian noise, burst noise and blurred burst noise are discussed in details by computer emulation. Furthermore, the practical method to decide parameters of wavelet transform is acquired through a great deal of experiment and data statistics. The methodology may yield an expectation in a wide variety of applications.

Improvement of Learning Motivation and Negotiation of Learning Disorders of Students Using Integrative Teaching Methodology

Integrative teaching methodology is based on connecting and summarizing knowledge from different subjects in order to create better understanding of different disciplines and improvement of competences in general. Integrative teaching methodology was implemented and realised during one academic year in 17 Latvian schools according with specially worked out programme by specialists of different fields for adaptation in social environment of children and young people with learning, cognitive functions and motor disorders. Implemented integrative teaching methodology consisted from three subsections which were specialised for adaptation in social environment, improvement of cognitive functions and improvement and harmonization of personality. The results of investigation showed that the use of integrative teaching methodology is an effective way for improvement of learning motivation and negotiation of learning disorders of different age schoolchildren.

Optimization of Enzymatic Hydrolysis of Manihot Esculenta Root Starch by Immobilizeda-Amylase Using Response Surface Methodology

Enzymatic hydrolysis of starch from natural sources finds potential application in commercial production of alcoholic beverage and bioethanol. In this study the effect of starch concentration, temperature, time and enzyme concentration were studied and optimized for hydrolysis of cassava (Manihot esculenta) starch powder (of mesh 80/120) into glucose syrup by immobilized (using Polyacrylamide gel) a-amylase using central composite design. The experimental result on enzymatic hydrolysis of cassava starch was subjected to multiple linear regression analysis using MINITAB 14 software. Positive linear effect of starch concentration, enzyme concentration and time was observed on hydrolysis of cassava starch by a-amylase. The statistical significance of the model was validated by F-test for analysis of variance (p < 0.01). The optimum value of starch concentration temperature, time and enzyme concentration were found to be 4.5% (w/v), 45oC, 150 min, and 1% (w/v) enzyme. The maximum glucose yield at optimum condition was 5.17 mg/mL.

Automation System for Optimization of Electrical and Thermal Energy Production in Cogenerative Gas Power Plants

The system is made with main distributed components: First Level: Industrial Computers placed in Control Room (monitors thermal and electrical processes based on the data provided by the second level); Second Level: PLCs which collects data from process and transmits information on the first level; also takes commands from this level which are further, passed to execution elements from third level; Third Level: field elements consisting in 3 categories: data collecting elements; data transfer elements from the third level to the second; execution elements which take commands from the second level PLCs and executes them after which transmits the confirmation of execution to them. The purpose of the automatic functioning is the optimization of the co-generative electrical energy commissioning in the national energy system and the commissioning of thermal energy to the consumers. The integrated system treats the functioning of all the equipments and devices as a whole: Gas Turbine Units (GTU); MT 20kV Medium Voltage Station (MVS); 0,4 kV Low Voltage Station (LVS); Main Hot Water Boilers (MHW); Auxiliary Hot Water Boilers (AHW); Gas Compressor Unit (GCU); Thermal Agent Circulation Pumping Unit (TPU); Water Treating Station (WTS).

The Low-carbon Transition Exploration of China's Traditional Manufacturing Industries

Aiming at the problems existing in low-carbon technology of Chinese manufacturing industries, such as irrational energy structure, lack of technological innovation, financial constraints, this paper puts forward the suggestion that the leading role of the government is combined with the roles of enterprises and market. That is, through increasing the governmental funding the adjustment of the industrial structures and enhancement of the legal supervision are supported. Technological innovation is accelerated by the enterprises, and the carbon trading will be promoted so as to trigger the low-carbon revolution in Chinese manufacturing field.

Development of a Portable Welding Robot with EtherCAT Interface

This paper presents a portable robot that is to use for welding process in shipbuilding yard. It has six degree of freedom and 3kg payload capability. Its weight is 21.5kg so that human workers can carry it to the work place. Its body mainly made of magnesium alloy and aluminum alloy for few parts that require high strength. Since the distance between robot and controller should be 50m at most, the robot controller controls the robot through EtherCAT. RTX and KPA are used for real time EtherCAT control on Windows XP. The performance of the developed robot was satisfactory, in welding of U type cell in shipbuilding yard.

Three Steps of One-way Nested Grid for Energy Balance Equations by Wave Model

The three steps of the standard one-way nested grid for a regional scale of the third generation WAve Model Cycle 4 (WAMC4) is scrutinized. The model application is enabled to solve the energy balance equation on a coarse resolution grid in order to produce boundary conditions for a smaller area by the nested grid technique. In the present study, the model takes a full advantage of the fine resolution of wind fields in space and time produced by the available U.S. Navy Global Atmospheric Prediction System (NOGAPS) model with 1 degree resolution. The nested grid application of the model is developed in order to gradually increase the resolution from the open ocean towards the South China Sea (SCS) and the Gulf of Thailand (GoT) respectively. The model results were compared with buoy observations at Ko Chang, Rayong and Huahin locations which were obtained from the Seawatch project. In addition, the results were also compared with Satun based weather station which was provided from Department of Meteorology, Thailand. The data collected from this station presented the significant wave height (Hs) reached 12.85 m. The results indicated that the tendency of the Hs from the model in the spherical coordinate propagation with deep water condition in the fine grid domain agreed well with the Hs from the observations.

Authentication Protocol for Wireless Sensor Networks

Wireless sensor networks can be used to measure and monitor many challenging problems and typically involve in monitoring, tracking and controlling areas such as battlefield monitoring, object tracking, habitat monitoring and home sentry systems. However, wireless sensor networks pose unique security challenges including forgery of sensor data, eavesdropping, denial of service attacks, and the physical compromise of sensor nodes. Node in a sensor networks may be vanished due to power exhaustion or malicious attacks. To expand the life span of the sensor network, a new node deployment is needed. In military scenarios, intruder may directly organize malicious nodes or manipulate existing nodes to set up malicious new nodes through many kinds of attacks. To avoid malicious nodes from joining the sensor network, a security is required in the design of sensor network protocols. In this paper, we proposed a security framework to provide a complete security solution against the known attacks in wireless sensor networks. Our framework accomplishes node authentication for new nodes with recognition of a malicious node. When deployed as a framework, a high degree of security is reachable compared with the conventional sensor network security solutions. A proposed framework can protect against most of the notorious attacks in sensor networks, and attain better computation and communication performance. This is different from conventional authentication methods based on the node identity. It includes identity of nodes and the node security time stamp into the authentication procedure. Hence security protocols not only see the identity of each node but also distinguish between new nodes and old nodes.

Microstructure and Corrosion Behavior of Laser Welded Magnesium Alloys with Silver Nanoparticles

Magnesium alloys have gained increased attention in recent years in automotive, electronics, and medical industry. This because of magnesium alloys have better properties than aluminum alloys and steels in respects of their low density and high strength to weight ratio. However, the main problems of magnesium alloy welding are the crack formation and the appearance of porosity during the solidification. This paper proposes a unique technique to weld two thin sheets of AZ31B magnesium alloy using a paste containing Ag nanoparticles. The paste containing Ag nanoparticles of 5 nm in average diameter and an organic solvent was used to coat the surface of AZ31B thin sheet. The coated sheet was heated at 100 °C for 60 s to evaporate the solvent. The dried sheet was set as a lower AZ31B sheet on the jig, and then lap fillet welding was carried out by using a pulsed Nd:YAG laser in a closed box filled with argon gas. The characteristics of the microstructure and the corrosion behavior of the joints were analyzed by opticalmicroscopy (OM), energy dispersive spectrometry (EDS), electron probe micro-analyzer (EPMA), scanning electron microscopy (SEM), and immersion corrosion test. The experimental results show that the wrought AZ31B magnesium alloy can be joined successfully using Ag nanoparticles. Ag nanoparticles insert promote grain refinement, narrower the HAZ width and wider bond width compared to weld without and insert. Corrosion rate of welded AZ31B with Ag nanoparticles reduced up to 44 % compared to base metal. The improvement of corrosion resistance of welded AZ31B with Ag nanoparticles due to finer grains and large grain boundaries area which consist of high Al content. β-phase Mg17Al12 could serve as effective barrier and suppressed further propagation of corrosion. Furthermore, Ag distribution in fusion zone provide much more finer grains and may stabilize the magnesium solid solution making it less soluble or less anodic in aqueous

Modified Data Mining Approach for Defective Diagnosis in Hard Disk Drive Industry

Currently, slider process of Hard Disk Drive Industry become more complex, defective diagnosis for yield improvement becomes more complicated and time-consumed. Manufacturing data analysis with data mining approach is widely used for solving that problem. The existing mining approach from combining of the KMean clustering, the machine oriented Kruskal-Wallis test and the multivariate chart were applied for defective diagnosis but it is still be a semiautomatic diagnosis system. This article aims to modify an algorithm to support an automatic decision for the existing approach. Based on the research framework, the new approach can do an automatic diagnosis and help engineer to find out the defective factors faster than the existing approach about 50%.

Enhancing Thermal Efficiency of Double Skin Façade Buildings in Semi-Arid Climate

There is a great deal of interest in constructing Double Skin Facade (DSF) structures which are considered as modern movement in field of Energy Conservation, renewable energies, and Architecture design. This trend provides many conclusive alternatives which are frequently associated with sustainable building. In this paper a building with Double Skin Facade is considered in the semiarid climate of Tehran, Iran, in order to consider the DSF-s performance during hot seasons. Mathematical formulations calculate solar heat gain by the external skin. Moreover, Computational Fluid Dynamics (CFD) simulations were performed on the case study building to enhance effectiveness of the facade. The conclusion divulged difference of gained energy by the cavity and room with and without blind and louvers. Some solutions were introduced to surge the performance of natural ventilation by plunging the cooling loads in summer.

The Impact of Website Personality on Consumers' Initial Trust towards Online Retailing Websites

E-tailing websites are often perceived to be static, impersonal and distant. However, with the movement of the World Wide Web to Web 2.0 in recent years, these online websites have been found to display personalities akin to 'humanistic' qualities and project impressions much like its retailing counterpart i.e. salespeople. This paper examines the personality of e-tailing websites and their impact on consumers- initial trust towards the sites. A total of 239 Internet users participated in this field experiment study which utilized 6 online book retailers- websites that the participants had not previously visited before. Analysis revealed that out of four website personalities (sincerity, competence, excitement and sophistication) only sincerity and competence are able to exert an influence in building consumers- trust upon their first visit to the website. The implications of the findings are further elaborated in this paper.

Methodology of Estimating Assembly Cost by MODAPTS

This paper presents the development of an MODAPTS based cost estimating system to help designers in estimating the manufacturing cost of a assembly products which is belonged from the workers in working fields. Competitiveness of manufacturing cost is getting harder because of the development of Information and telecommunication, but also globalization. Therefore, the accuracy of the assembly cost estimation is getting important. DFA and MODAPTS is useful method for measuring the working hour. But these two methods are used just as a timetable. Therefore, in this paper, we suggest the process of measuring the working hours by MODAPTS which includes the working field-s accurate information. In addition, we adduce the estimation method of accuracy assembly cost with the real information. This research could be useful for designers that can estimate the assembly cost more accurately, and also effective for the companies that which are concerned to reduce the product cost.

Electrical Field Around the Overhead Transmission Lines

In this paper, the computation of the electrical field distribution around AC high-voltage lines is demonstrated. The advantages and disadvantages of two different methods are described to evaluate the electrical field quantity. The first method is a seminumerical method using the laws of electrostatic techniques to simulate the two-dimensional electric field under the high-voltage overhead line. The second method which will be discussed is the finite element method (FEM) using specific boundary conditions to compute the two- dimensional electric field distributions in an efficient way.

Scheduling Maintenance Actions for Gas Turbines Aircraft Engines

This paper considers the problem of scheduling maintenance actions for identical aircraft gas turbine engines. Each one of the turbines consists of parts which frequently require replacement. A finite inventory of spare parts is available and all parts are ready for replacement at any time. The inventory consists of both new and refurbished parts. Hence, these parts have different field lives. The goal is to find a replacement part sequencing that maximizes the time that the aircraft will keep functioning before the inventory is replenished. The problem is formulated as an identical parallel machine scheduling problem where the minimum completion time has to be maximized. Two models have been developed. The first one is an optimization model which is based on a 0-1 linear programming formulation, while the second one is an approximate procedure which consists in decomposing the problem into several two-machine subproblems. Each subproblem is optimally solved using the first model. Both models have been implemented using Lingo and have been tested on two sets of randomly generated data with up to 150 parts and 10 turbines. Experimental results show that the optimization model is able to solve only instances with no more than 4 turbines, while the decomposition procedure often provides near-optimal solutions within a maximum CPU time of 3 seconds.

A Persian OCR System using Morphological Operators

Optical Character Recognition (OCR) is a very old and of great interest in pattern recognition field. In this paper we introduce a very powerful approach to recognize Persian text. We have used morphological operators, especially Hit/Miss operator to descript each sub-word and by using a template matching approach we have tried to classify generated description. We used just one font in two different sizes to verify our approach. We achieved a very good rate, up to 99.9%.