Heuristic Set-Covering-Based Postprocessing for Improving the Quine-McCluskey Method

Finding the minimal logical functions has important applications in the design of logical circuits. This task is solved by many different methods but, frequently, they are not suitable for a computer implementation. We briefly summarise the well-known Quine-McCluskey method, which gives a unique procedure of computing and thus can be simply implemented, but, even for simple examples, does not guarantee an optimal solution. Since the Petrick extension of the Quine-McCluskey method does not give a generally usable method for finding an optimum for logical functions with a high number of values, we focus on interpretation of the result of the Quine-McCluskey method and show that it represents a set covering problem that, unfortunately, is an NP-hard combinatorial problem. Therefore it must be solved by heuristic or approximation methods. We propose an approach based on genetic algorithms and show suitable parameter settings.

A Cooperative Weighted Discriminator Energy Detector Technique in Fading Environment

The need in cognitive radio system for a simple, fast, and independent technique to sense the spectrum occupancy has led to the energy detection approach. Energy detector is known by its dependency on noise variation in the system which is one of its major drawbacks. In this paper, we are aiming to improve its performance by utilizing a weighted collaborative spectrum sensing, it is similar to the collaborative spectrum sensing methods introduced previously in the literature. These weighting methods give more improvement for collaborative spectrum sensing as compared to no weighting case. There is two method proposed in this paper: the first one depends on the channel status between each sensor and the primary user while the second depends on the value of the energy measured in each sensor.

Improving E-Government Services for Non- English Speaking Background (NESB) Communities in Australia

Australian government agencies have a natural desire to provide migrants a wide range of opportunities. Consequently, government online services should be equally available to migrants with a non-English speaking background (NESB). Despite the commendable efforts of governments and local agencies in Australia to provide such services, in reality, many NESB communities are not taking advantage of these services. This article–based on an extensive case study regarding the use of online government services by the Arabic NESB community in Australia–reports on the possible reasons for this issue, as well as suggestions for improvement. The conclusion is that Australia should implement ICT-based or e-government policies, programmes, and services that more accurately reflect migrant cultures and languages so that migrant integration can be more fully accomplished. Specifically, this article presents an NESB Model that adopts the value of usercentricity or a more individual-focused approach to government online services in Australia.

Low Dimensional Representation of Dorsal Hand Vein Features Using Principle Component Analysis (PCA)

The quest of providing more secure identification system has led to a rise in developing biometric systems. Dorsal hand vein pattern is an emerging biometric which has attracted the attention of many researchers, of late. Different approaches have been used to extract the vein pattern and match them. In this work, Principle Component Analysis (PCA) which is a method that has been successfully applied on human faces and hand geometry is applied on the dorsal hand vein pattern. PCA has been used to obtain eigenveins which is a low dimensional representation of vein pattern features. Low cost CCD cameras were used to obtain the vein images. The extraction of the vein pattern was obtained by applying morphology. We have applied noise reduction filters to enhance the vein patterns. The system has been successfully tested on a database of 200 images using a threshold value of 0.9. The results obtained are encouraging.

Water Vapor Plasma Torch: Design, Characteristics and Applications

The atmospheric pressure plasma torch with a direct current arc discharge stabilized by water vapor vortex was experimentally investigated. Overheated up to 450K water vapor was used as plasma forming gas. Plasma torch design is one of the most important factors leading to a stable operation of the device. The electrical and thermal characteristics of the plasma torch were determined during the experimental investigations. The design and the basic characteristics of the water vapor plasma torch are presented in the paper. Plasma torches with the electric arc stabilized by water vapor vortex provide special performance characteristics in some plasma processing applications such as thermal plasma neutralization and destruction of organic wastes enabling to extract high caloric value synthesis gas as by-product of the process. Syngas could be used as a surrogate fuel partly replacing the dependence on the fossil fuels or used as a feedstock for hydrogen, methanol production.

Interaction Effect of Feed Rate and Cutting Speed in CNC-Turning on Chip Micro-Hardness of 304- Austenitic Stainless Steel

The present work is concerned with the effect of turning process parameters (cutting speed, feed rate, and depth of cut) and distance from the center of work piece as input variables on the chip micro-hardness as response or output. Three experiments were conducted; they were used to investigate the chip micro-hardness behavior at diameter of work piece for 30[mm], 40[mm], and 50[mm]. Response surface methodology (R.S.M) is used to determine and present the cause and effect of the relationship between true mean response and input control variables influencing the response as a two or three dimensional hyper surface. R.S.M has been used for designing a three factor with five level central composite rotatable factors design in order to construct statistical models capable of accurate prediction of responses. The results obtained showed that the application of R.S.M can predict the effect of machining parameters on chip micro-hardness. The five level factorial designs can be employed easily for developing statistical models to predict chip micro-hardness by controllable machining parameters. Results obtained showed that the combined effect of cutting speed at it?s lower level, feed rate and depth of cut at their higher values, and larger work piece diameter can result increasing chi micro-hardness.

A Practical Method for Load Balancing in the LV Distribution Networks Case Study: Tabriz Electrical Network

In this paper, a new efficient method for load balancing in low voltage distribution systems is presented. The proposed method introduces an improved Leap-frog method for optimization. The proposed objective function includes the difference between three phase currents, as well as two other terms to provide the integer property of the variables; where the latter are the status of the connection of loads to different phases. Afterwards, a new algorithm is supplemented to undertake the integer values for the load connection status. Finally, the method is applied to different parts of Tabriz low voltage network, where the results have shown the good performance of the proposed method.

Roles and Responsibilities to Success of IT Project in an Organization

Many IT projects come to failure because of having technical approach, focusing on the final product and lack of proper attention to strategic alignment. Project management models quite often have technical management view [4], [8], [13], [14]. These models focus greatly on the finalization of the project product and the delivery of the product to the customer. However, many project problems are due to lack of attention to the needs and capabilities of the organizations or disregarding how to deploy and use the product in the organization. In this regard, in the current research we are trying to present a solution with the purpose of raising the value of the project in an organization. This way, the project outputs will be properly deployed in the organization. Therefore, a comprehensive model is presented which takes into account the whole processes from initial step of project definition to the deployment of the final outputs in the organization and then the definition of all roles and responsibilities to put the model into practice. Taking into account the opinions of experts and project managers, to prove the performance of the model, the project problems were recognized and based on the model, categorized and analyzed. And at the end it is made clear that ignoring the proper definition of the project and not having a proper understanding of the expected value on the one hand and not supervising the emerged value in the process of production and installment are among the most important factors that bring a project to failure.

Non-Destructive Evaluation of 2-Mercapto Substituted Pyrimidine Derivatives in Different Concentration and Different Percentages in Dioxane-Water Mixture

Science and technology of ultrasonic is widely used in recent years for industrial and medicinal application. The acoustical properties of 2-mercapto substituted pyrimidines viz.,2- Mercapto-4- (2’,4’ –dichloro phenyl) – 6-(2’ – hydroxyl -4’ –methyl-5’ – chlorophenyl) pyrimidine and 2 –Mercapto – 4-(4’ –chloro phenyl) – 6-(2’ – hydroxyl -4’ –methyl-5’ –chlorophenyl) pyrimidine have been investigated from the ultrasonic velocity and density measurements at different concentration and different % in dioxane-water mixture at 305K. The adiabatic compressibility (βs), acoustic impedance (Z), intermolecular free length (Lf), apparent molar volume(ϕv) and relative association (RA) values have been calculated from the experimental data of velocity and density measurement at concentration range of 0.01- 0.000625 mol/lit and 70%,75% and 80% dioxane water mixture. These above parameters are used to discuss the structural and molecular interactions.

An AK-Chart for the Non-Normal Data

Traditional multivariate control charts assume that measurement from manufacturing processes follows a multivariate normal distribution. However, this assumption may not hold or may be difficult to verify because not all the measurement from manufacturing processes are normal distributed in practice. This study develops a new multivariate control chart for monitoring the processes with non-normal data. We propose a mechanism based on integrating the one-class classification method and the adaptive technique. The adaptive technique is used to improve the sensitivity to small shift on one-class classification in statistical process control. In addition, this design provides an easy way to allocate the value of type I error so it is easier to be implemented. Finally, the simulation study and the real data from industry are used to demonstrate the effectiveness of the propose control charts.

Elliptical Features Extraction Using Eigen Values of Covariance Matrices, Hough Transform and Raster Scan Algorithms

In this paper, we introduce a new method for elliptical object identification. The proposed method adopts a hybrid scheme which consists of Eigen values of covariance matrices, Circular Hough transform and Bresenham-s raster scan algorithms. In this approach we use the fact that the large Eigen values and small Eigen values of covariance matrices are associated with the major and minor axial lengths of the ellipse. The centre location of the ellipse can be identified using circular Hough transform (CHT). Sparse matrix technique is used to perform CHT. Since sparse matrices squeeze zero elements and contain a small number of nonzero elements they provide an advantage of matrix storage space and computational time. Neighborhood suppression scheme is used to find the valid Hough peaks. The accurate position of circumference pixels is identified using raster scan algorithm which uses the geometrical symmetry property. This method does not require the evaluation of tangents or curvature of edge contours, which are generally very sensitive to noise working conditions. The proposed method has the advantages of small storage, high speed and accuracy in identifying the feature. The new method has been tested on both synthetic and real images. Several experiments have been conducted on various images with considerable background noise to reveal the efficacy and robustness. Experimental results about the accuracy of the proposed method, comparisons with Hough transform and its variants and other tangential based methods are reported.

Conjugate Heat transfer over an Unsteady Stretching Sheet Mixed Convection with Magnetic Effect

A conjugate heat transfer for steady two-dimensional mixed convection with magnetic hydrodynamic (MHD) flow of an incompressible quiescent fluid over an unsteady thermal forming stretching sheet has been studied. A parameter, M, which is used to represent the dominance of the magnetic effect has been presented in governing equations. The similar transformation and an implicit finite-difference method have been used to analyze the present problem. The numerical solutions of the flow velocity distributions, temperature profiles, the wall unknown values of f''(0) and '(θ (0) for calculating the heat transfer of the similar boundary-layer flow are carried out as functions of the unsteadiness parameter (S), the Prandtl number (Pr), the space-dependent parameter (A) and temperature-dependent parameter (B) for heat source/sink and the magnetic parameter (M). The effects of these parameters have also discussed. At the results, it will produce greater heat transfer effect with a larger Pr and M, S, A, B will reduce heat transfer effects. At last, conjugate heat transfer for the free convection with a larger G has a good heat transfer effect better than a smaller G=0.

Laminar Free Convection of Nanofluid Flow in Horizontal Porous Annulus

A numerical study has been carried out to investigate the heat transfer by natural convection of nanofluid taking Cu as nanoparticles and the water as based fluid in a three dimensional annulus enclosure filled with porous media (silica sand) between two horizontal concentric cylinders with 12 annular fins of 2.4mm thickness attached to the inner cylinder under steady state conditions. The governing equations which used are continuity, momentum and energy equations under an assumptions used Darcy law and Boussinesq-s approximation which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7. The parameters affected on the system are modified Rayleigh number (10 ≤Ra*≤ 1000), fin length Hf (3, 7 and 11mm), radius ratio Rr (0.293, 0.365 and 0.435) and the volume fraction(0 ≤ ¤ò ≤ 0 .35). It was found that the average Nusselt number depends on (Ra*, Hf, Rr and φ). The results show that, increasing of fin length decreases the heat transfer rate and for low values of Ra*, decreasing Rr cause to decrease Nu while for Ra* greater than 100, decreasing Rr cause to increase Nu and adding Cu nanoparticles with 0.35 volume fraction cause 27.9% enhancement in heat transfer. A correlation for Nu in terms of Ra*, Hf and φ, has been developed for inner hot cylinder.

Analytical Solution for Free Vibration of Rectangular Kirchhoff Plate from Wave Approach

In this paper, an analytical approach for free vibration analysis of four edges simply supported rectangular Kirchhoff plates is presented. The method is based on wave approach. From wave standpoint vibration propagate, reflect and transmit in a structure. Firstly, the propagation and reflection matrices for plate with simply supported boundary condition are derived. Then, these matrices are combined to provide a concise and systematic approach to free vibration analysis of a simply supported rectangular Kirchhoff plate. Subsequently, the eigenvalue problem for free vibration of plates is formulated and the equation of plate natural frequencies is constructed. Finally, the effectiveness of the approach is shown by comparison of the results with existing classical solution.

Assessment of Cadmium Level in Water from Watershed of the Kowsar Dam

The Kowsar dam supply water for different usages such as drinking, industrial, agricultural and aquaculture farms usages and located next to the city of Dehdashat in Kohgiluye and Boyerahmad province in southern Iran. There are some towns and villages on the Kowsar dam watersheds, which Dehdasht and Choram are the most important and populated cities in this area. The study was undertaken to assess the status of water quality in the urban areas of the Kowsar dam. A total of 28 water samples were collected from 6 stations on surface water and 1 station from groundwater on the watershed of the Kowsar dam. All the samples were analyzed for Cd concentration using standard procedures. The results were compared with other national and international standards. Among the analyzed samples, as the maximum value of cadmium (1.131 μg/L) was observed on the station 2 at the winter 2009, all the samples analyzed were within the maximum admissible limits by the United States Environmental Protection Agency, EU, WHO, New Zealand , Australian, Iranian, and the Indian standards. In general results of the present study have shown that Cd mean values of stations No. 4, 1 and 2 with 0.5135, 0.0.4733 and 0.4573 μg/L respectively are higher than the other stations . Although Cd level of all samples and stations have had normal values but this is an indication of pollution potential and hazards because of human activity and waste water of towns in the areas, which can effect on human health implications in future. This research, therefore, recommends the government and other responsible authorities to take suitable improving measures in the Kowsar dam watershed-s.

A Monte Carlo Method to Data Stream Analysis

Data stream analysis is the process of computing various summaries and derived values from large amounts of data which are continuously generated at a rapid rate. The nature of a stream does not allow a revisit on each data element. Furthermore, data processing must be fast to produce timely analysis results. These requirements impose constraints on the design of the algorithms to balance correctness against timely responses. Several techniques have been proposed over the past few years to address these challenges. These techniques can be categorized as either dataoriented or task-oriented. The data-oriented approach analyzes a subset of data or a smaller transformed representation, whereas taskoriented scheme solves the problem directly via approximation techniques. We propose a hybrid approach to tackle the data stream analysis problem. The data stream has been both statistically transformed to a smaller size and computationally approximated its characteristics. We adopt a Monte Carlo method in the approximation step. The data reduction has been performed horizontally and vertically through our EMR sampling method. The proposed method is analyzed by a series of experiments. We apply our algorithm on clustering and classification tasks to evaluate the utility of our approach.

XPM Response of Multiple Quantum Well chirped DFB-SOA All Optical Flip-Flop Switching

In this paper, based on the coupled-mode and carrier rate equations, derivation of a dynamic model and numerically analysis of a MQW chirped DFB-SOA all-optical flip-flop is done precisely. We have analyzed the effects of strains of QW and MQW and cross phase modulation (XPM) on the dynamic response, and rise and fall times of the DFB-SOA all optical flip flop. We have shown that strained MQW active region in under an optimized condition into a DFB-SOA with chirped grating can improve the switching ON speed limitation in such a of the device, significantly while the fall time is increased. The values of the rise times for such an all optical flip-flop, are obtained in an optimized condition, areas tr=255ps.

Signal-to-Noise Ratio Improvement of EMCCD Cameras

Over the past years, the EMCCD has had a profound influence on photon starved imaging applications relying on its unique multiplication register based on the impact ionization effect in the silicon. High signal-to-noise ratio (SNR) means high image quality. Thus, SNR improvement is important for the EMCCD. This work analyzes the SNR performance of an EMCCD with gain off and on. In each mode, simplified SNR models are established for different integration times. The SNR curves are divided into readout noise (or CIC) region and shot noise region by integration time. Theoretical SNR values comparing long frame integration and frame adding in each region are presented and discussed to figure out which method is more effective. In order to further improve the SNR performance, pixel binning is introduced into the EMCCD. The results show that pixel binning does obviously improve the SNR performance, but at the expensive of the spatial resolution.

Solar Radiation Studies for Dubai and Sharjah, UAE

Global Solar Radiation (H) for Dubai and Sharjah, Latitude 25.25oN, Longitude 55oE and 25.29oN, Longitude 55oE respectively have been studied using sunshine hour data (n) of the areas using various methods. These calculated global solar radiation values are then compared to the measured values presented by NASA. Furthermore, the extraterrestrial (H0), diffuse (Hd) and beam radiation (Hb) are also calculated. The diffuse radiation is calculated using methods proposed by Page and Liu and Jordan (L-J). Diffuse Radiation from the Page method is higher than the L-J method. Moreover, the clearness index (KT) signifies a clear sky almost all year round. Rainy days are hardly a few in a year and limited in the months December to March. The temperature remains between 25oC in winter to 44oC in summer and is desirable for thermal applications of solar energy. From the estimated results, it appears that solar radiation can be utilized very efficiently throughout the year for photovoltaic and thermal applications.

Free Convection in a MHD Porous Cavity with using Lattice Boltzmann Method

We report the results of an lattice Boltzmann simulation of magnetohydrodynamic damping of sidewall convection in a rectangular enclosure filled with a porous medium. In particular we investigate the suppression of convection when a steady magnetic field is applied in the vertical direction. The left and right vertical walls of the cavity are kept at constant but different temperatures while both the top and bottom horizontal walls are insulated. The effects of the controlling parameters involved in the heat transfer and hydrodynamic characteristics are studied in detail. The heat and mass transfer mechanisms and the flow characteristics inside the enclosure depended strongly on the strength of the magnetic field and Darcy number. The average Nusselt number decreases with rising values of the Hartmann number while this increases with increasing values of the Darcy number.