Adomian Decomposition Method Associated with Boole-s Integration Rule for Goursat Problem

The Goursat partial differential equation arises in linear and non linear partial differential equations with mixed derivatives. This equation is a second order hyperbolic partial differential equation which occurs in various fields of study such as in engineering, physics, and applied mathematics. There are many approaches that have been suggested to approximate the solution of the Goursat partial differential equation. However, all of the suggested methods traditionally focused on numerical differentiation approaches including forward and central differences in deriving the scheme. An innovation has been done in deriving the Goursat partial differential equation scheme which involves numerical integration techniques. In this paper we have developed a new scheme to solve the Goursat partial differential equation based on the Adomian decomposition (ADM) and associated with Boole-s integration rule to approximate the integration terms. The new scheme can easily be applied to many linear and non linear Goursat partial differential equations and is capable to reduce the size of computational work. The accuracy of the results reveals the advantage of this new scheme over existing numerical method.

Robust Fractional-Order PI Controller with Ziegler-Nichols Rules

In process control applications, above 90% of the controllers are of PID type. This paper proposed a robust PI controller with fractional-order integrator. The PI parameters were obtained using classical Ziegler-Nichols rules but enhanced with the application of error filter cascaded to the fractional-order PI. The controller was applied on steam temperature process that was described by FOPDT transfer function. The process can be classified as lag dominating process with very small relative dead-time. The proposed control scheme was compared with other PI controller tuned using Ziegler-Nichols and AMIGO rules. Other PI controller with fractional-order integrator known as F-MIGO was also considered. All the controllers were subjected to set point change and load disturbance tests. The performance was measured using Integral of Squared Error (ISE) and Integral of Control Signal (ICO). The proposed controller produced best performance for all the tests with the least ISE index.

Impact Assessment of Air Pollution Stress on Plant Species through Biochemical Estimations

The present study was conducted to investigate the response of plants exposed to lignite-based thermal power plant emission. For this purpose, five plant species were collected from 1.0 km distance (polluted site) and control plants were collected from 20.0 km distance (control site) to thermal power plant. The common tree species Cassia siamea Lamk., Polyalthia longifolia. Sonn, Acacia longifolia (Andrews) Wild., Azadirachta indica A.Juss, Ficus religiosa L. were selected as test plants. Photosynthetic pigments changes (chlorophyll a, chlorophyll b and carotenoids) and rubisco enzyme modifications were studied. Reduction was observed in the photosynthetic pigments of plants growing in polluted site and also large sub unit of the rubisco enzyme was degraded in Azadirachta indica A. Juss collected from polluted site.

Solar Photo-Fenton Induced Degradation of Combined Chlorpyrifos, Cypermethrin and Chlorothalonil Pesticides in Aqueous Solution

The feasibility of employing solar radiation for enhanced Fenton process in degradation of combined chlorpyrifos, cypermethrin and chlorothalonil pesticides was examined. The effect of various operating conditions of the process on biodegradability improvement and mineralization of the pesticides were also evaluated. The optimum operating conditions for treatment of aqueous solution containing 100, 50 and 250 mg L-1 chlorpyrifos cypermethrin and chlorothalonil, respectively were observed to be H2O2/COD molar ratio 2, H2O2/Fe2+ molar ratio 25 and pH 3. Under the optimum operating conditions, complete degradation of the pesticides occurred in 1 min. Biodegradability (BOD5/COD) increased from zero to 0.36 in 60 min, and COD and TOC removal were 74.19 and 58.32%, respectively in 60 min. Due to mineralization of organic carbon, decrease in ammonia-nitrogen from 22 to 4.3 mg L-1 and increase in nitrate from 0.7 to 18.1 mg L-1 in 60 min were recorded. The study indicated that solar photo-Fenton process can be used for pretreatment of chlorpyrifos, cypermethrin and chlorothalonil pesticides in aqueous solution for further biological treatment.

Research on the Methodologies of the Opportune Innovation - A Case Study of BYD

The main purpose of this paper is to research on the methodologies of BYD to implement the opportune innovation. BYD is a Chinese company which has the IT component manufacture, the rechargeable battery and the automobile businesses. The paper deals with the innovation methodology as the same as the IPR management BYD implements in order to obtain the rapid growth of technology development with the reasonable cost of money and time.

On the Reduction of Side Effects in Tomography

As the Computed Tomography(CT) requires normally hundreds of projections to reconstruct the image, patients are exposed to more X-ray energy, which may cause side effects such as cancer. Even when the variability of the particles in the object is very less, Computed Tomography requires many projections for good quality reconstruction. In this paper, less variability of the particles in an object has been exploited to obtain good quality reconstruction. Though the reconstructed image and the original image have same projections, in general, they need not be the same. In addition to projections, if a priori information about the image is known, it is possible to obtain good quality reconstructed image. In this paper, it has been shown by experimental results why conventional algorithms fail to reconstruct from a few projections, and an efficient polynomial time algorithm has been given to reconstruct a bi-level image from its projections along row and column, and a known sub image of unknown image with smoothness constraints by reducing the reconstruction problem to integral max flow problem. This paper also discusses the necessary and sufficient conditions for uniqueness and extension of 2D-bi-level image reconstruction to 3D-bi-level image reconstruction.

Sustainable Urban Development of Slum Prone Area of Dhaka City

Dhaka, the capital city of Bangladesh, is one of the densely populated cities in the world. Due to rapid urbanization 60% of its population lives in slum and squatter settlements. The reason behind this poverty is low economic growth, inequitable distribution of income, unequal distribution of productive assets, unemployment and underemployment, high rate of population growth, low level of human resource development, natural disasters, and limited access to public services. Along with poverty, creating pressure on urban land, shelter, plots, open spaces this creates environmental and ecological degradation. These constraints are mostly resulted from the failures of the government policies and measures and only Government can solve this problem. This is now prime time to establish planning and environmental management policy and sustainable urban development for the city and for the urban slum dwellers which are free from eviction, criminals, rent seekers and other miscreants.

Balancing Tourism and Environment: The ETM Model

Environment both endowed and built are essential for tourism. However tourism and environment maintains a complex relationship, where in most cases environment is at the receiving end. Many tourism development activities have adverse environmental effects, mainly emanating from construction of general infrastructure and tourism facilities. These negative impacts of tourism can lead to the destruction of precious natural resources on which it depends. These effects vary between locations; and its effect on a hill destination is highly critical. This study aims at developing a Sustainable Tourism Planning Model for an environmentally sensitive tourism destination in Kerala, India. Being part of the Nilgiri mountain ranges, Munnar falls in the Western Ghats, one of the biological hotspots in the world. Endowed with a unique high altitude environment Munnar inherits highly significant ecological wealth. Giving prime importance to the protection of this ecological heritage, the study proposes a tourism planning model with resource conservation and sustainability as the paramount focus. Conceiving a novel approach towards sustainable tourism planning, the study proposes to assess tourism attractions using Ecological Sensitivity Index (ESI) and Tourism Attractiveness Index (TAI). Integration of these two indices will form the Ecology – Tourism Matrix (ETM), outlining the base for tourism planning in an environmentally sensitive destination. The ETM Matrix leads to a classification of tourism nodes according to its Conservation Significance and Tourism Significance. The spatial integration of such nodes based on the Hub & Spoke Principle constitutes sub – regions within the STZ. Ensuing analyses lead to specific guidelines for the STZ as a whole, specific tourism nodes, hubs and sub-regions. The study results in a multi – dimensional output, viz., (1) Classification system for tourism nodes in an environmentally sensitive region/ destination (2) Conservation / Tourism Development Strategies and Guidelines for the micro and macro regions and (3) A Sustainable Tourism Planning Tool particularly for Ecologically Sensitive Destinations, which can be adapted for other destinations as well.

Optimization of Some Process Parameters to Produce Raisin Concentrate in Khorasan Region of Iran

Raisin Concentrate (RC) are the most important products obtained in the raisin processing industries. These RC products are now used to make the syrups, drinks and confectionery productions and introduced as natural substitute for sugar in food applications. Iran is a one of the biggest raisin exporter in the world but unfortunately despite a good raw material, no serious effort to extract the RC has been taken in Iran. Therefore, in this paper, we determined and analyzed affected parameters on extracting RC process and then optimizing these parameters for design the extracting RC process in two types of raisin (round and long) produced in Khorasan region. Two levels of solvent (1:1 and 2:1), three levels of extraction temperature (60°C, 70°C and 80°C), and three levels of concentration temperature (50°C, 60°C and 70°C) were the treatments. Finally physicochemical characteristics of the obtained concentrate such as color, viscosity, percentage of reduction sugar, acidity and the microbial tests (mould and yeast) were counted. The analysis was performed on the basis of factorial in the form of completely randomized design (CRD) and Duncan's multiple range test (DMRT) was used for the comparison of the means. Statistical analysis of results showed that optimal conditions for production of concentrate is round raisins when the solvent ratio was 2:1 with extraction temperature of 60°C and then concentration temperature of 50°C. Round raisin is cheaper than the long one, and it is more economical to concentrate production. Furthermore, round raisin has more aromas and the less color degree with increasing the temperature of concentration and extraction. Finally, according to mentioned factors the concentrate of round raisin is recommended.

A Green Design for Assembly Model for Integrated Design Evaluation and Assembly and Disassembly Sequence Planning

A green design for assembly model is presented to integrate design evaluation and assembly and disassembly sequence planning by evaluating the three activities in one integrated model. For an assembled product, an assembly sequence planning model is required for assembling the product at the start of the product life cycle. A disassembly sequence planning model is needed for disassembling the product at the end. In a green product life cycle, it is important to plan how a product can be disassembled, reused, or recycled, before the product is actually assembled and produced. Given a product requirement, there may be several design alternative cases to design the same product. In the different design cases, the assembly and disassembly sequences for producing the product can be different. In this research, a new model is presented to concurrently evaluate the design and plan the assembly and disassembly sequences. First, the components are represented by using graph based models. Next, a particle swarm optimization (PSO) method with a new encoding scheme is developed. In the new PSO encoding scheme, a particle is represented by a position matrix defining an assembly sequence and a disassembly sequence. The assembly and disassembly sequences can be simultaneously planned with an objective of minimizing the total of assembly costs and disassembly costs. The test results show that the presented method is feasible and efficient for solving the integrated design evaluation and assembly and disassembly sequence planning problem. An example product is implemented and illustrated in this paper.

The Effect of Education Level on Psychological Empowerment and Burnout-The Mediating Role of Workplace Learning Behaviors

The study investigates the relationship between education level, workplace learning behaviors, psychological empowerment and burnout in a sample of 191 teachers. We hypothesized that education level will positively affect psychological state of increased empowerment and decreased burnout, and we purposed that these effects will be mediated by workplace learning behaviors. We used multiple regression analyses to test the model that included also the 6 following control variables: The teachers' age, gender, and teaching tenure; the schools' religious level, the pupils' needs: regular/ special needs, and the class level: elementary/ high school. The results support the purposed mediating model.

Advanced ILQ Control for Buck-Converter viaTwo-Degrees of Freedom Servo-System

In this paper, we propose an advanced ILQ control for the buck-converter via two-degrees of freedom servo-system. Our presented strategy is based on Inverse Linear Quadratic (ILQ) servo-system controller without solving Riccati-s equation directly. The optimal controller of the current and voltage control system is designed. The stability and robust control are analyzed. A conscious and persistent effort has been made to improve ILQ control via two-degrees of freedom guarantees the optimal gains on the basis of polynomial pole assignment, which our results of the proposed strategy shows that the advanced ILQ control can be controlled independently the step response and the disturbance response by appending a feed-forward compensator.

Managing a Manufacturing System with Integration of Walking Worker and Lean Thinking

A product goes through various processes in a production flow which is also known as assembly line in manufacturing process management. Toyota created a new concept which is known as lean concept in manufacturing industry. Today it is the leading model in manufacturing plants through the globe. The linear walking worker assembly line is a flexible assembly system where each worker travels down the line carrying out each assembly task at each station; and each worker accomplishes the assembly of a unit from start to finish. This paper attempts to combine the flexibility of the walking worker and lean in order to quantify the benefits from applying the shop floor principles of lean management.

Osmotic Dehydration of Beetroot in Salt Solution: Optimization of Parameters through Statistical Experimental Design

Response surface methodology was used for quantitative investigation of water and solids transfer during osmotic dehydration of beetroot in aqueous solution of salt. Effects of temperature (25 – 45oC), processing time (30–150 min), salt concentration (5–25%, w/w) and solution to sample ratio (5:1 – 25:1) on osmotic dehydration of beetroot were estimated. Quadratic regression equations describing the effects of these factors on the water loss and solids gain were developed. It was found that effects of temperature and salt concentrations were more significant on the water loss than the effects of processing time and solution to sample ratio. As for solids gain processing time and salt concentration were the most significant factors. The osmotic dehydration process was optimized for water loss, solute gain, and weight reduction. The optimum conditions were found to be: temperature – 35oC, processing time – 90 min, salt concentration – 14.31% and solution to sample ratio 8.5:1. At these optimum values, water loss, solid gain and weight reduction were found to be 30.86 (g/100 g initial sample), 9.43 (g/100 g initial sample) and 21.43 (g/100 g initial sample) respectively.

Characterization and Modeling of Piezoelectric Integrated Micro Speakers for Audio Acoustic Actuation

An array of piezoelectric micro actuators can be used for radiation of an ultrasonic carrier signal modulated in amplitude with an acoustic signal, which yields audio frequency applications as the air acts as a self-demodulating medium. This application is known as the parametric array. We propose a parametric array with array elements based on existing piezoelectric micro ultrasonic transducer (pMUT) design techniques. In order to reach enough acoustic output power at a desired operating frequency, a proper ratio between number of array elements and array size needs to be used, with an array total area of the order of one cm square. The transducers presented are characterized via impedance, admittance, noise figure, transducer gain and frequency responses.

Efficient Mean Shift Clustering Using Exponential Integral Kernels

This paper presents a highly efficient algorithm for detecting and tracking humans and objects in video surveillance sequences. Mean shift clustering is applied on backgrounddifferenced image sequences. For efficiency, all calculations are performed on integral images. Novel corresponding exponential integral kernels are introduced to allow the application of nonuniform kernels for clustering, which dramatically increases robustness without giving up the efficiency of the integral data structures. Experimental results demonstrating the power of this approach are presented.

Dissertation by Portfolio - A Break from Traditional Approaches

Much has been written about the difficulties students have with producing traditional dissertations. This includes both native English speakers (L1) and students with English as a second language (L2). The main emphasis of these papers has been on the structure of the dissertation, but in all cases, even when electronic versions are discussed, the dissertation is still in what most would regard as a traditional written form. Master of Science Degrees in computing disciplines require students to gain technical proficiency and apply their knowledge to a range of scenarios. The basis of this paper is that if a dissertation is a means of showing that such a student has met the criteria for a pass, which should be based on the learning outcomes of the dissertation module, does meeting those outcomes require a student to demonstrate their skills in a solely text based form, particularly in a highly technical research project? Could it be possible for a student to produce a series of related artifacts which form a cohesive package that meets the learning out comes of the dissertation?

Auto Tuning of PID Controller for MIMO Processes

One of the most basic functions of control engineers is tuning of controllers. There are always several process loops in the plant necessitate of tuning. The auto tuned Proportional Integral Derivative (PID) Controllers are designed for applications where large load changes are expected or the need for extreme accuracy and fast response time exists. The algorithm presented in this paper is used for the tuning PID controller to obtain its parameters with a minimum computing complexity. It requires continuous analysis of variation in few parameters, and let the program to do the plant test and calculate the controller parameters to adjust and optimize the variables for the best performance. The algorithm developed needs less time as compared to a normal step response test for continuous tuning of the PID through gain scheduling.

Distillation Monitoring and Control using LabVIEW and SIMULINK Tools

LabVIEW and SIMULINK are two most widely used graphical programming environments for designing digital signal processing and control systems. Unlike conventional text-based programming languages such as C, Cµ and MATLAB, graphical programming involves block-based code developments, allowing a more efficient mechanism to build and analyze control systems. In this paper a LabVIEW environment has been employed as a graphical user interface for monitoring the operation of a controlled distillation column, by visualizing both the closed loop performance and the user selected control conditions, while the column dynamics has been modeled under the SIMULINK environment. This tool has been applied to the PID based decoupled control of a binary distillation column. By means of such integrated environments the control designer is able to monitor and control the plant behavior and optimize the response when both, the quality improvement of distillation products and the operation efficiency tasks, are considered.

Innovation Knowledge and Capability, Work Efficiency of Accountants and the Success of SME Registered in Nakorn Pathom Province

The objectives of this research were to compare the success of SME registered in Nakorn Pathom Province divided in personal data also to study the relations between the innovation knowledge and capability and the success of SME registered in Nakorn Pathom Province and to study the relations between the work efficiency and the success of SME registered in Nakorn Pathom Province. A questionnaire was utilized as a tool to collect data. Statistics utilized in this research included frequency, percentage, mean, standard deviation, and multiple regression analysis. Data were analyzed by using Statistical Package for the Social Sciences.The findings revealed that the majority of respondents were male with the age between 25-34 years old, hold undergraduate degree, married and stay together. The average income of respondents was between 10,001-20,000 baht. It also found that in terms of innovation knowledge and capability, there were two variables had an influence on the amount of innovation knowledge and capability, innovation evaluation which were physical characteristic and innovation process.