A Multi-Level WEB Based Parallel Processing System A Hierarchical Volunteer Computing Approach

Over the past few years, a number of efforts have been exerted to build parallel processing systems that utilize the idle power of LAN-s and PC-s available in many homes and corporations. The main advantage of these approaches is that they provide cheap parallel processing environments for those who cannot afford the expenses of supercomputers and parallel processing hardware. However, most of the solutions provided are not very flexible in the use of available resources and very difficult to install and setup. In this paper, a multi-level web-based parallel processing system (MWPS) is designed (appendix). MWPS is based on the idea of volunteer computing, very flexible, easy to setup and easy to use. MWPS allows three types of subscribers: simple volunteers (single computers), super volunteers (full networks) and end users. All of these entities are coordinated transparently through a secure web site. Volunteer nodes provide the required processing power needed by the system end users. There is no limit on the number of volunteer nodes, and accordingly the system can grow indefinitely. Both volunteer and system users must register and subscribe. Once, they subscribe, each entity is provided with the appropriate MWPS components. These components are very easy to install. Super volunteer nodes are provided with special components that make it possible to delegate some of the load to their inner nodes. These inner nodes may also delegate some of the load to some other lower level inner nodes .... and so on. It is the responsibility of the parent super nodes to coordinate the delegation process and deliver the results back to the user. MWPS uses a simple behavior-based scheduler that takes into consideration the current load and previous behavior of processing nodes. Nodes that fulfill their contracts within the expected time get a high degree of trust. Nodes that fail to satisfy their contract get a lower degree of trust. MWPS is based on the .NET framework and provides the minimal level of security expected in distributed processing environments. Users and processing nodes are fully authenticated. Communications and messages between nodes are very secure. The system has been implemented using C#. MWPS may be used by any group of people or companies to establish a parallel processing or grid environment.

Decision Support System Based on Data Warehouse

Typical Intelligent Decision Support System is 4-based, its design composes of Data Warehouse, Online Analytical Processing, Data Mining and Decision Supporting based on models, which is called Decision Support System Based on Data Warehouse (DSSBDW). This way takes ETL,OLAP and DM as its implementing means, and integrates traditional model-driving DSS and data-driving DSS into a whole. For this kind of problem, this paper analyzes the DSSBDW architecture and DW model, and discusses the following key issues: ETL designing and Realization; metadata managing technology using XML; SQL implementing, optimizing performance, data mapping in OLAP; lastly, it illustrates the designing principle and method of DW in DSSBDW.

A Nonconforming Mixed Finite Element Method for Semilinear Pseudo-Hyperbolic Partial Integro-Differential Equations

In this paper, a nonconforming mixed finite element method is studied for semilinear pseudo-hyperbolic partial integrodifferential equations. By use of the interpolation technique instead of the generalized elliptic projection, the optimal error estimates of the corresponding unknown function are given.

Virtual Mechanical Engineering Education – A Case Study

Virtual engineering technology has undergone rapid progress in recent years and is being adopted increasingly by manufacturing companies of many engineering disciplines. There is an increasing demand from industry for qualified virtual engineers. The qualified virtual engineers should have the ability of applying engineering principles and mechanical design methods within the commercial software package environment. It is a challenge to the engineering education in universities which traditionally tends to lack the integration of knowledge and skills required for solving real world problems. In this paper, a case study shows some recent development of a MSc Mechanical Engineering course at Department of Engineering and Technology in MMU, and in particular, two units Simulation of Mechanical Systems(SMS) and Computer Aided Fatigue Analysis(CAFA) that emphasize virtual engineering education and promote integration of knowledge acquisition, skill training and industrial application.

Authentic Leadership, Trust and Work Engagement

The issue of leadership has been investigated from several perspectives; however, very less from ethical perspective. With the growing number of corporate scandals and unethical roles played by business leaders in several parts of the world, the need to examine leadership from ethical perspective cannot be over emphasized. The importance of leadership credibility has been discussed in the authentic model of leadership. Authentic leaders display high degree of integrity, have deep sense of purpose, and committed to their core values. As a result they promote a more trusting relationship in their work groups that translates into several positive outcomes. The present study examined how authentic leadership contribute to subordinates- trust in leadership and how this trust, in turn, predicts subordinates- work engagement. A sample of 395 employees was randomly selected from several local banks operating in Malaysia. Standardized tools such as ALQ, OTI, and EEQ were employed. Results indicated that authentic leadership promoted subordinates- trust in leader, and contributed to work engagement. Also, interpersonal trust predicted employees- work engagement as well as mediated the relationship between this style of leadership and employees- work engagement.

Flat Miniature Heat Pipes for Electronics Cooling: State of the Art, Experimental and Theoretical Analysis

An experimental study is realized in order to verify the Mini Heat Pipe (MHP) concept for cooling high power dissipation electronic components and determines the potential advantages of constructing mini channels as an integrated part of a flat heat pipe. A Flat Mini Heat Pipe (FMHP) prototype including a capillary structure composed of parallel rectangular microchannels is manufactured and a filling apparatus is developed in order to charge the FMHP. The heat transfer improvement obtained by comparing the heat pipe thermal resistance to the heat conduction thermal resistance of a copper plate having the same dimensions as the tested FMHP is demonstrated for different heat input flux rates. Moreover, the heat transfer in the evaporator and condenser sections are analyzed, and heat transfer laws are proposed. In the theoretical part of this work, a detailed mathematical model of a FMHP with axial microchannels is developed in which the fluid flow is considered along with the heat and mass transfer processes during evaporation and condensation. The model is based on the equations for the mass, momentum and energy conservation, which are written for the evaporator, adiabatic, and condenser zones. The model, which permits to simulate several shapes of microchannels, can predict the maximum heat transfer capacity of FMHP, the optimal fluid mass, and the flow and thermal parameters along the FMHP. The comparison between experimental and model results shows the good ability of the numerical model to predict the axial temperature distribution along the FMHP.

Comparative Performance and Microbial Community of Single-phase and Two-phase Anaerobic Systems Co-Digesting Cassava Pulpand Pig Manure

In this study, we illustrated the performance and microbial community of single- and two-phase systems anaerobically co-digesting cassava pulp and pig manure. The results showed that the volatile solid reduction and biogas productivity of two-phase CSTR were 66 ± 4% and 2000 ± 210 ml l-1 d-1, while those of singlephase CSTR were 59 ± 1% and 1670 ± 60 ml l-1 d-1, respectively. Codigestion in two-phase CSTR gave higher 12% solid degradation and 25% methane production than single-phase CSTR. Phylogenetic analysis of 16S rDNA clone library revealed that the Bacteroidetes were the most abundant group, followed by the Clostridia in singlephase CSTR. In hydrolysis/acidification reactor of two-phase system, the bacteria within the phylum Firmicutes, especially Clostridium, Eubacteriaceae and Lactobacillus were the dominant phylogenetic groups. Among the Archaea, Methanosaeta sp. was the exclusive predominant in both digesters while the relative abundance of Methanosaeta sp. and Methanospirillum hungatei differed between the two systems.

A Semantic Web Based Ontology in the Financial Domain

The paper describes design of an ontology in the financial domain for mutual funds. The design of this ontology consists of four steps, namely, specification, knowledge acquisition, implementation and semantic query. Specification includes a description of the taxonomy and different types mutual funds and their scope. Knowledge acquisition involves the information extraction from heterogeneous resources. Implementation describes the conceptualization and encoding of this data. Finally, semantic query permits complex queries to integrated data, mapping of these database entities to ontological concepts.

Smart Sustainable Cities: An Integrated Planning Approach towards Sustainable Urban Energy Systems, India

Cities denote instantaneously a challenge and an opportunity for climate change policy. Cities are the place where most energy services are needed because urbanization is closely linked to high population densities and concentration of economic activities and production (Urban energy demand). Consequently, it is critical to explain about the role of cities within the world-s energy systems and its correlation with the climate change issue. With more than half of the world-s population already living in urban areas, and that percentage expected to rise to 75 per cent by 2050, it is clear that the path to sustainable development must pass through cities. Cities expanding in size and population pose increased challenges to the environment, of which energy is part as a natural resource, and to the quality of life. Nowadays, most cities have already understood the importance of sustainability, both at their local scale as in terms of their contribution to sustainability at higher geographical scales. It requires the perception of a city as a complex and dynamic ecosystem, an open system, or cluster of systems, where the energy as well as the other natural resources is transformed to satisfy the needs of the different urban activities. In fact, buildings and transportation generally represent most of cities direct energy demand, i.e., between 60 per cent and 80 per cent of the overall consumption. Buildings, both residential and services are usually influenced by the local physical and social conditions. In terms of transport, the energy demand is also strongly linked with the specific characteristics of a city (urban mobility).The concept of a “smart city" builds on statistics as seven key axes of a city-s success in moving towards common platform (brain nerve)of sustainable urban energy systems. With the aforesaid knowledge, the authors have suggested a frame work to role of cities, as energy actors for smart city management. The authors have discusses the potential elements needed for energy in smart cities and also identified potential energy actions and relevant barriers. Furthermore, three levels of city smartness in cities actions to overcome market /institutional failures with a local approach are distinguished. The authors have made an attempt to conceive and implement concepts of city smartness by adopting the city or local government as nerve center through an integrated planning approach. Finally, concluding with recommendations for the organization of the Smart Sustainable Cities for positive changes of urban India.

Navigation and Self Alignment of Inertial Systems using Nonlinear H∞ Filters

Micro electromechanical sensors (MEMS) play a vital role along with global positioning devices in navigation of autonomous vehicles .These sensors are low cost ,easily available but depict colored noises and unpredictable discontinuities .Conventional filters like Kalman filters and Sigma point filters are not able to cope with nonwhite noises. This research has utilized H∞ filter in nonlinear frame work both with Kalman filter and Unscented filter for navigation and self alignment of an airborne vehicle. The system is simulated for colored noises and discontinuities and results are compared with not robust nonlinear filters. The results are found 40%-70% more robust against colored noises and discontinuities.

Visualization of Sediment Thickness Variation for Sea Bed Logging using Spline Interpolation

This paper discusses on the use of Spline Interpolation and Mean Square Error (MSE) as tools to process data acquired from the developed simulator that shall replicate sea bed logging environment. Sea bed logging (SBL) is a new technique that uses marine controlled source electromagnetic (CSEM) sounding technique and is proven to be very successful in detecting and characterizing hydrocarbon reservoirs in deep water area by using resistivity contrasts. It uses very low frequency of 0.1Hz to 10 Hz to obtain greater wavelength. In this work the in house built simulator was used and was provided with predefined parameters and the transmitted frequency was varied for sediment thickness of 1000m to 4000m for environment with and without hydrocarbon. From series of simulations, synthetics data were generated. These data were interpolated using Spline interpolation technique (degree of three) and mean square error (MSE) were calculated between original data and interpolated data. Comparisons were made by studying the trends and relationship between frequency and sediment thickness based on the MSE calculated. It was found that the MSE was on increasing trends in the set up that has the presence of hydrocarbon in the setting than the one without. The MSE was also on decreasing trends as sediment thickness was increased and with higher transmitted frequency.

Expert System for Chose Material used Gears

In order to give high expertise the computer aided design of mechanical systems involves specific activities focused on processing two type of information: knowledge and data. Expert rule based knowledge is generally processing qualitative information and involves searching for proper solutions and their combination into synthetic variant. Data processing is based on computational models and it is supposed to be inter-related with reasoning in the knowledge processing. In this paper an Intelligent Integrated System is proposed, for the objective of choosing the adequate material. The software is developed in Prolog – Flex software and takes into account various constraints that appear in the accurate operation of gears.

Efficient Hardware Realization of Truncated Multipliers using FPGA

Truncated multiplier is a good candidate for digital signal processing (DSP) applications including finite impulse response (FIR) and discrete cosine transform (DCT). Through truncated multiplier a significant reduction in Field Programmable Gate Array (FPGA) resources can be achieved. This paper presents for the first time a comparison of resource utilization of Spartan-3AN and Virtex-5 implementation of standard and truncated multipliers using Very High Speed Integrated Circuit Hardware Description Language (VHDL). The Virtex-5 FPGA shows significant improvement as compared to Spartan-3AN FPGA device. The Virtex-5 FPGA device shows better performance with a percentage ratio of number of occupied slices for standard to truncated multipliers is increased from 40% to 73.86% as compared to Spartan- 3AN is decreased from 68.75% to 58.78%. Results show that the anomaly in Spartan-3AN FPGA device average connection and maximum pin delay have been efficiently reduced in Virtex-5 FPGA device.

Machine Learning Methods for Environmental Monitoring and Flood Protection

More and more natural disasters are happening every year: floods, earthquakes, volcanic eruptions, etc. In order to reduce the risk of possible damages, governments all around the world are investing into development of Early Warning Systems (EWS) for environmental applications. The most important task of the EWS is identification of the onset of critical situations affecting environment and population, early enough to inform the authorities and general public. This paper describes an approach for monitoring of flood protections systems based on machine learning methods. An Artificial Intelligence (AI) component has been developed for detection of abnormal dike behaviour. The AI module has been integrated into an EWS platform of the UrbanFlood project (EU Seventh Framework Programme) and validated on real-time measurements from the sensors installed in a dike.

An Inter-banking Auditing Security Solution for Detecting Unauthorised Financial Transactions entered by Authorised Insiders

Insider abuse has recently been reported as one of the more frequently occurring security incidents, suggesting that more security is required for detecting and preventing unauthorised financial transactions entered by authorised users. To address the problem, and based on the observation that all authorised interbanking financial transactions trigger or are triggered by other transactions in a workflow, we have developed a security solution based on a redefined understanding of an audit workflow. One audit workflow where there is a log file containing the complete workflow activity of financial transactions directly related to one financial transaction (an electronic deal recorded at an e-trading system). The new security solution contemplates any two parties interacting on the basis of financial transactions recorded by their users in related but distinct automated financial systems. In the new definition interorganizational and intra-organization interactions can be described in one unique audit trail. This concept expands the current ideas of audit trails by adapting them to actual e-trading workflow activity, i.e. intra-organizational and inter-organizational activity. With the above, a security auditing service is designed to detect integrity drifts with and between organizations in order to detect unauthorised financial transactions entered by authorised users.

Sensorless Speed Based on MRAS with Tuning of IP Speed Controller in FOC of Induction Motor Drive Using PSO

In this paper, a field oriented control (FOC) induction motor drive is presented. In order to eliminate the speed sensor, an adaptation algorithm for tuning the rotor speed is proposed. Based on the Model Reference Adaptive System (MRAS) scheme, the rotor speed is tuned to obtain an exact FOC induction motor drive. The reference and adjustable models, developed in stationary stator reference frame, are used in the MRAS scheme to estimate induction rotor speed from measured terminal voltages and currents. The Integral Proportional (IP) gains speed controller are tuned by a modern approach that is the Particle Swarm Optimization (PSO) algorithm in order to optimize the parameters of the IP controller. The use of PSO as an optimization algorithm makes the drive robust, with faster dynamic response, higher accuracy and insensitive to load variation. The proposed algorithm has been tested by numerical simulation, showing the capability of driving load.

A Note on the Numerical Solution of Singular Integral Equations of Cauchy Type

This manuscript presents a method for the numerical solution of the Cauchy type singular integral equations of the first kind, over a finite segment which is bounded at the end points of the finite segment. The Chebyshev polynomials of the second kind with the corresponding weight function have been used to approximate the density function. The force function is approximated by using the Chebyshev polynomials of the first kind. It is shown that the numerical solution of characteristic singular integral equation is identical with the exact solution, when the force function is a cubic function. Moreover, it also shown that this numerical method gives exact solution for other singular integral equations with degenerate kernels.

U.S. Supreme Court Decision Making in the Area of Religion, 1987-2011

There are many views on how human decision makers behave. In this work, the Justices of the United States Supreme Court will be viewed in terms of constrained maximization and cognitivecybernetic theory. This paper will integrate research in such fields as law, political science, psychology, economics and decision making theory. It will be argued that due to its heavy workload, the Supreme Court is forced to make decisions in a boundedly rational manner. The ideas and theory put forward here will be tested in the area of the Court’s decisions involving religion. Therefore, the cases involving the U.S. Constitution’s Free Exercise Clause and Establishment Clause will be analyzed. Also, variables such as the U.S. government’s involvement in these cases will be considered. The years to be studied will be 1987-2011.

Adoptability Issues of GPS in Public Sector in Pakistan

This study discusses the stumbling blocks stifling the adoption of GPS technology in the public sector of Pakistan. This study has been carried out in order to describe the value of GPS technology and its adoption at various public sector organisations in Pakistan. Sample size for the research conducted was 200; personnel working in public sector having age above 29 years were surveyed. Data collected for this research has been quantitatively analysed with the help of SPSS. Regression analysis, correlation and cross tabulation were the techniques used to determine the strength of relationship between key variables. Findings of this research indicate that main hurdles in GPS adoption in the public sector of Pakistan are lack of awareness about GPS among masses in general and the stakeholders in particular, lack of initiative on part of government in promoting new technologies, unavailability of GPS infrastructure in Pakistan and prohibitions on map availability because of security reasons.

Application of a Fracture-Mechanics Approach to Gas Pipelines

This study offers a new simple method for assessing an axial part-through crack in a pipe wall. The method utilizes simple approximate expressions for determining the fracture parameters K, J, and employs these parameters to determine critical dimensions of a crack on the basis of equality between the J-integral and the J-based fracture toughness of the pipe steel. The crack tip constraint is taken into account by the so-called plastic constraint factor C, by which the uniaxial yield stress in the J-integral equation is multiplied. The results of the prediction of the fracture condition are verified by burst tests on test pipes.