Intelligent Vision System for Human-Robot Interface

This paper addresses the development of an intelligent vision system for human-robot interaction. The two novel contributions of this paper are 1) Detection of human faces and 2) Localizing the eye. The method is based on visual attributes of human skin colors and geometrical analysis of face skeleton. This paper introduces a spatial domain filtering method named ?Fuzzily skewed filter' which incorporates Fuzzy rules for deciding the gray level of pixels in the image in their neighborhoods and takes advantages of both the median and averaging filters. The effectiveness of the method has been justified over implementing the eye tracking commands to an entertainment robot, named ''AIBO''.

Novel Hybrid Method for Gene Selection and Cancer Prediction

Microarray data profiles gene expression on a whole genome scale, therefore, it provides a good way to study associations between gene expression and occurrence or progression of cancer. More and more researchers realized that microarray data is helpful to predict cancer sample. However, the high dimension of gene expressions is much larger than the sample size, which makes this task very difficult. Therefore, how to identify the significant genes causing cancer becomes emergency and also a hot and hard research topic. Many feature selection algorithms have been proposed in the past focusing on improving cancer predictive accuracy at the expense of ignoring the correlations between the features. In this work, a novel framework (named by SGS) is presented for stable gene selection and efficient cancer prediction . The proposed framework first performs clustering algorithm to find the gene groups where genes in each group have higher correlation coefficient, and then selects the significant genes in each group with Bayesian Lasso and important gene groups with group Lasso, and finally builds prediction model based on the shrinkage gene space with efficient classification algorithm (such as, SVM, 1NN, Regression and etc.). Experiment results on real world data show that the proposed framework often outperforms the existing feature selection and prediction methods, say SAM, IG and Lasso-type prediction model.

Mapping Complex, Large – Scale Spiking Networks on Neural VLSI

Traditionally, VLSI implementations of spiking neural nets have featured large neuron counts for fixed computations or small exploratory, configurable nets. This paper presents the system architecture of a large configurable neural net system employing a dedicated mapping algorithm for projecting the targeted biology-analog nets and dynamics onto the hardware with its attendant constraints.

A Comparison and Analysis of Name Matching Algorithms

Names are important in many societies, even in technologically oriented ones which use e.g. ID systems to identify individual people. Names such as surnames are the most important as they are used in many processes, such as identifying of people and genealogical research. On the other hand variation of names can be a major problem for the identification and search for people, e.g. web search or security reasons. Name matching presumes a-priori that the recorded name written in one alphabet reflects the phonetic identity of two samples or some transcription error in copying a previously recorded name. We add to this the lode that the two names imply the same person. This paper describes name variations and some basic description of various name matching algorithms developed to overcome name variation and to find reasonable variants of names which can be used to further increasing mismatches for record linkage and name search. The implementation contains algorithms for computing a range of fuzzy matching based on different types of algorithms, e.g. composite and hybrid methods and allowing us to test and measure algorithms for accuracy. NYSIIS, LIG2 and Phonex have been shown to perform well and provided sufficient flexibility to be included in the linkage/matching process for optimising name searching.

Analysing the Elementary Science and Technology Coursebook and Student Workbook in Terms of Constructivism

The curriculum of the primary school science course was redesigned on the basis of constructivism in 2005-2006 academic years, in Turkey. In this context, the name of this course has been changed as “Science and Technology"; and both content and course books, students workbooks for this course have been redesigned in light of constructivism. The aim of this study is to determine whether the Science and Technology course books and student work books for primary school 5th grade are appropriate for the constructivism by evaluating them in terms of the fundamental principles of constructivism. In this study, out of qualitative research methods, documentation technique (i.e. document analysis) is applied; while selecting samples, criterion-sampling is used out of purposeful sampling techniques. When the Science and Technology course book and workbook for the 5th grade in primary education are examined, it is seen that both books complete each other in certain areas. Consequently, it can be claimed that in spite of some inadequate and missing points in the course book and workbook of the primary school Science and Technology course for the 5th grade students, these books are attempted to be designed in terms of the principles of constructivism. To overcome the inadequacies in the books, it can be suggested to redesign them. In addition to them, not to ignore the technology dimension of the course, the activities that encourage the students to prepare projects using technology cycle should be included.

An Analysis of Blackouts for Electric Power Transmission Systems

In this paper an analysis of blackouts in electric power transmission systems is implemented using a model and studied in simple networks with a regular topology. The proposed model describes load demand and network improvements evolving on a slow timescale as well as the fast dynamics of cascading overloads and outages.

Analysis of Dynamic Loads Induced by Spectator Movements in Stadium

In the stadium structure, the significant dynamic responses such as resonance or similar behavior can be occurred by spectator rhythmical activities. Thus, accurate analysis and precise investigation of stadium structure that is subjected to dynamic loads are required for practical design and serviceability check of stadium structures. Moreover, it is desirable to measure and analyze the dynamic loads of spectator activities because these dynamic loads can not be easily expressed in numerical formula. In this study, various dynamic loads induced by spectator movements are measured and analyzed. These dynamic loads induced by spectators movement of stadium structure can be classified into the impact load and the periodic load. These dynamic loads can be expressed as Fourier harmonic load. And, these dynamic loads could be applied for the accurate vibration analysis of a stadium structure.

Robust Control Synthesis for an Unmanned Underwater Vehicle

The control design for unmanned underwater vehicles (UUVs) is challenging due to the uncertainties in the complex dynamic modeling of the vehicle as well as its unstructured operational environment. To cope with these difficulties, a practical robust control is therefore desirable. The paper deals with the application of coefficient diagram method (CDM) for a robust control design of an autonomous underwater vehicle. The CDM is an algebraic approach in which the characteristic polynomial and the controller are synthesized simultaneously. Particularly, a coefficient diagram (comparable to Bode diagram) is used effectively to convey pertinent design information and as a measure of trade-off between stability, response speed and robustness. In the polynomial ring, Kharitonov polynomials are employed to analyze the robustness of the controller due to parametric uncertainties.

Innovative Teaching in Systems Analysis and Design - an Action Research Project

Systems Analysis and Design is a key subject in Information Technology courses, but students do not find it easy to cope with, since it is not “precise" like programming and not exact like Mathematics. It is a subject working with many concepts, modeling ideas into visual representations and then translating the pictures into a real life system. To complicate matters users who are not necessarily familiar with computers need to give their inputs to ensure that they get the system the need. Systems Analysis and Design also covers two fields, namely Analysis, focusing on the analysis of the existing system and Design, focusing on the design of the new system. To be able to test the analysis and design of a system, it is necessary to develop a system or at least a prototype of the system to test the validity of the analysis and design. The skills necessary in each aspect differs vastly. Project Management Skills, Database Knowledge and Object Oriented Principles are all necessary. In the context of a developing country where students enter tertiary education underprepared and the digital divide is alive and well, students need to be motivated to learn the necessary skills, get an opportunity to test it in a “live" but protected environment – within the framework of a university. The purpose of this article is to improve the learning experience in Systems Analysis and Design through reviewing the underlying teaching principles used, the teaching tools implemented, the observations made and the reflections that will influence future developments in Systems Analysis and Design. Action research principles allows the focus to be on a few problematic aspects during a particular semester.

Emission Constrained Economic Dispatch for Hydrothermal Coordination

This paper presents an efficient emission constrained economic dispatch algorithm that deals with nonlinear cost function and constraints. It is then incorporated into the dynamic programming based hydrothermal coordination program. The program has been tested on a practical utility system having 32 thermal and 12 hydro generating units. Test results show that a slight increase in production cost causes a substantial reduction in emission.

CFD Analysis on Aerodynamic Design Optimization of Wind Turbine Rotor Blades

Wind energy has been shown to be one of the most viable sources of renewable energy. With current technology, the low cost of wind energy is competitive with more conventional sources of energy such as coal. Most blades available for commercial grade wind turbines incorporate a straight span-wise profile and airfoil shaped cross sections. These blades are found to be very efficient at lower wind speeds in comparison to the potential energy that can be extracted. However as the oncoming wind speed increases the efficiency of the blades decreases as they approach a stall point. This paper explores the possibility of increasing the efficiency of the blades at higher wind speeds while maintaining efficiency at the lower wind speeds. The design intends to maintain efficiency at lower wind speeds by selecting the appropriate orientation and size of the airfoil cross sections based on a low oncoming wind speed and given constant rotation rate. The blades will be made more efficient at higher wind speeds by implementing a swept blade profile. Performance was investigated using the computational fluid dynamics (CFD).

Parallel Algorithm for Numerical Solution of Three-Dimensional Poisson Equation

In this paper developed and realized absolutely new algorithm for solving three-dimensional Poisson equation. This equation used in research of turbulent mixing, computational fluid dynamics, atmospheric front, and ocean flows and so on. Moreover in the view of rising productivity of difficult calculation there was applied the most up-to-date and the most effective parallel programming technology - MPI in combination with OpenMP direction, that allows to realize problems with very large data content. Resulted products can be used in solving of important applications and fundamental problems in mathematics and physics.

Performance Evaluation of Routing Protocols For High Density Ad Hoc Networks based on Qos by GlomoSim Simulator

Ad hoc networks are characterized by multihop wireless connectivity, frequently changing network topology and the need for efficient dynamic routing protocols. We compare the performance of three routing protocols for mobile ad hoc networks: Dynamic Source Routing (DSR) , Ad Hoc On-Demand Distance Vector Routing (AODV), location-aided routing(LAR1).The performance differentials are analyzed using varying network load, mobility, and network size. We simulate protocols with GLOMOSIM simulator. Based on the observations, we make recommendations about when the performance of either protocol can be best.

Addressing Security Concerns of Data Exchange in AODV Protocol

The Ad Hoc on demand distance vector (AODV) routing protocol is designed for mobile ad hoc networks (MANETs). AODV offers quick adaptation to dynamic link conditions; it is characterized by low memory overhead and low network utilization. The security issues related to the protocol remain challenging for the wireless network designers. Numerous schemes have been proposed for establishing secure communication between end users, these schemes identify that the secure operation of AODV is a bi tier task (routing and secure exchange of information at separate levels). Our endeavor in this paper would focus on achieving the routing and secure data exchange in a single step. This will facilitate the user nodes to perform routing, mutual authentications, generation and secure exchange of session key in one step thus ensuring confidentiality, integrity and authentication of data exchange in a more suitable way.

Application of Advanced Oxidation Processes to Mefenamic Acid Elimination

The elimimation of mefenamic acid has been carried out by photolysis, ozonation, adsorption onto activated carbon (AC) and combinations of the previous single systems (O3+AC and O3+UV). The results obtained indicate that mefenamic acid is not photo-reactive, showing a relatively low quantum yield of the order of 6 x 10-4 mol Einstein-1. Application of ozone to mefenamic aqueous solutions instantaneously eliminates the pharmaceutical, achieving simultaneously a 40% of mineralization. Addition of AC to the ozonation process does not enhance the process, moreover, mineralization is completely inhibited if compared to results obtained by single ozonation. The combination of ozone and UV radiation led to the best results in terms of mineralization (60% after 120 min).

Towards An Integrated Model for Academia- Industry Interface in India

Academia-industry relationship is not like that of technology donator-acceptor, but is of interactive and collaborative nature, acknowledging and ensuring mutual respect for each other-s role and contributions with an eye to attaining the true purpose of such relationships, namely, bringing about research-outcome synergy. Indeed, academia-industry interactions are a system that requires active and collaborative participations of all the stakeholders. This paper examines various issues associated with academic institutions and industry collaboration with special attention to the nature of resources and potentialities of stakeholders in the context of knowledge management. This paper also explores the barriers of academia-industry interaction. It identifies potential areas where industry-s participation with academia would be most effective for synergism. Lastly, this paper proposes an integrated model of several new collaborative approaches that are possible, mainly in the Indian scenario to strengthen academia-industry interface.

Framework for Spare Inventory Management

Spare parts inventory management is one of the major areas of inventory research. Analysis of recent literature showed that an approach integrating spare parts classification, demand forecasting, and stock control policies is essential; however, adapting this integrated approach is limited. This work presents an integrated framework for spare part inventory management and an Excel based application developed for the implementation of the proposed framework. A multi-criteria analysis has been used for spare classification. Forecasting of spare parts- intermittent demand has been incorporated into the application using three different forecasting models; namely, normal distribution, exponential smoothing, and Croston method. The application is also capable of running with different inventory control policies. To illustrate the performance of the proposed framework and the developed application; the framework is applied to different items at a service organization. The results achieved are presented and possible areas for future work are highlighted.

Coupled Dynamics in Host-Guest Complex Systems Duplicates Emergent Behavior in the Brain

The ability of the brain to organize information and generate the functional structures we use to act, think and communicate, is a common and easily observable natural phenomenon. In object-oriented analysis, these structures are represented by objects. Objects have been extensively studied and documented, but the process that creates them is not understood. In this work, a new class of discrete, deterministic, dissipative, host-guest dynamical systems is introduced. The new systems have extraordinary self-organizing properties. They can host information representing other physical systems and generate the same functional structures as the brain does. A simple mathematical model is proposed. The new systems are easy to simulate by computer, and measurements needed to confirm the assumptions are abundant and readily available. Experimental results presented here confirm the findings. Applications are many, but among the most immediate are object-oriented engineering, image and voice recognition, search engines, and Neuroscience.

Calculation of Heating Load for an Apartment Complex with Unit Building Method

As a simple to method estimate the plant heating energy capacity of an apartment complex, a new load calculation method has been proposed. The method which can be called as unit building method, predicts the heating load of the entire complex instead of summing up that of each apartment belonging to complex. Comparison of the unit heating load for various floor sizes between the present method and conventional approach shows a close agreement with dynamic load calculation code. Some additional calculations are performed to demonstrate it-s application examples.

Modeling and Control of Direct Driven PMSG for Ultra Large Wind Turbines

This paper focuses on developing an integrated reliable and sophisticated model for ultra large wind turbines And to study the performance and analysis of vector control on large wind turbines. With the advance of power electronics technology, direct driven multi-pole radial flux PMSG (Permanent Magnet Synchronous Generator) has proven to be a good choice for wind turbines manufacturers. To study the wind energy conversion systems, it is important to develop a wind turbine simulator that is able to produce realistic and validated conditions that occur in real ultra MW wind turbines. Three different packages are used to simulate this model, namely, Turbsim, FAST and Simulink. Turbsim is a Full field wind simulator developed by National Renewable Energy Laboratory (NREL). The wind turbine mechanical parts are modeled by FAST (Fatigue, Aerodynamics, Structures and Turbulence) code which is also developed by NREL. Simulink is used to model the PMSG, full scale back to back IGBT converters, and the grid.