Improvement of the Quality of Internet Service Based On an Internet Exchange Point (IXP)

Internet is without any doubt the fastest and effective mean of communication making it possible to reach a great number of people in the world. It draws its base from exchange points. Indeed exchange points are used to inter-connect various Internet suppliers and operators in order to allow them to exchange traffic and it is with these interconnections that Internet made its great strides. They thus make it possible to limit the traffic delivered via the operators of transits. This limitation allows a significant improvement of the quality of service, a reduction in the latency time just as a reduction of the cost of connection for the final subscriber. Through this article we will show how the installation of an IXP allows an improvement and a diversification of the services just as a reduction of the Internet connection costs.

Machine Learning Techniques for Short-Term Rain Forecasting System in the Northeastern Part of Thailand

This paper presents the methodology from machine learning approaches for short-term rain forecasting system. Decision Tree, Artificial Neural Network (ANN), and Support Vector Machine (SVM) were applied to develop classification and prediction models for rainfall forecasts. The goals of this presentation are to demonstrate (1) how feature selection can be used to identify the relationships between rainfall occurrences and other weather conditions and (2) what models can be developed and deployed for predicting the accurate rainfall estimates to support the decisions to launch the cloud seeding operations in the northeastern part of Thailand. Datasets collected during 2004-2006 from the Chalermprakiat Royal Rain Making Research Center at Hua Hin, Prachuap Khiri khan, the Chalermprakiat Royal Rain Making Research Center at Pimai, Nakhon Ratchasima and Thai Meteorological Department (TMD). A total of 179 records with 57 features was merged and matched by unique date. There are three main parts in this work. Firstly, a decision tree induction algorithm (C4.5) was used to classify the rain status into either rain or no-rain. The overall accuracy of classification tree achieves 94.41% with the five-fold cross validation. The C4.5 algorithm was also used to classify the rain amount into three classes as no-rain (0-0.1 mm.), few-rain (0.1- 10 mm.), and moderate-rain (>10 mm.) and the overall accuracy of classification tree achieves 62.57%. Secondly, an ANN was applied to predict the rainfall amount and the root mean square error (RMSE) were used to measure the training and testing errors of the ANN. It is found that the ANN yields a lower RMSE at 0.171 for daily rainfall estimates, when compared to next-day and next-2-day estimation. Thirdly, the ANN and SVM techniques were also used to classify the rain amount into three classes as no-rain, few-rain, and moderate-rain as above. The results achieved in 68.15% and 69.10% of overall accuracy of same-day prediction for the ANN and SVM models, respectively. The obtained results illustrated the comparison of the predictive power of different methods for rainfall estimation.

Assessing Local Knowledge Dynamics: Regional Knowledge Economy Indicators

The paper represents a reflection on how to select proper indicators to assess the progress of regional contexts towards a knowledge-based society. Taking the first research methodologies elaborated at an international level (World Bank, OECD, etc.) as a reference point, this work intends to identify a set of indicators of the knowledge economy suitable to adequately understand in which manner and to which extent the territorial development dynamics are correlated with the knowledge-base of the considered local society. After a critical survey of the variables utilized within other approaches adopted by international or national organizations, this paper seeks to elaborate a framework of variables, named Regional Knowledge Economy Indicators (ReKEI), necessary to describe the knowledge-based relations of subnational socio-economic contexts. The realization of this framework has a double purpose: an analytical one consisting in highlighting the regional differences in the governance of knowledge based processes, and an operative one consisting in providing some reference parameters for contributing to increasing the effectiveness of those economic policies aiming at enlarging the knowledge bases of local societies.

An Analytical Solution for Vibration of Elevator Cables with Small Bending Stiffness

Responses of the dynamical systems are highly affected by the natural frequencies and it has a huge impact on design and operation of high-rise and high-speed elevators. In the present paper, the variational iteration method (VIM) is employed to investigate better understanding the dynamics of elevator cable as a single-degree-of-freedom (SDOF) swing system. Comparisons made among the results of the proposed closed-form analytical solution, the traditional numerical iterative time integration solution, and the linearized governing equations confirm the accuracy and efficiency of the proposed approach. Furthermore, based on the results of the proposed closed-form solution, the linearization errors in calculating the natural frequencies in different cases are discussed.

A Study on Linking Upward Substitution and Fuzzy Demands in the Newsboy-Type Problem

This paper investigates the effect of product substitution in the single-period 'newsboy-type' problem in a fuzzy environment. It is supposed that the single-period problem operates under uncertainty in customer demand, which is described by imprecise terms and modelled by fuzzy sets. To perform this analysis, we consider the fuzzy model for two-item with upward substitution. This upward substitutability is reasonable when the products can be stored according to certain attribute levels such as quality, brand or package size. We show that the explicit consideration of this substitution opportunity increase the average expected profit. Computational study is performed to observe the benefits of product's substitution.

IMLFQ Scheduling Algorithm with Combinational Fault Tolerant Method

Scheduling algorithms are used in operating systems to optimize the usage of processors. One of the most efficient algorithms for scheduling is Multi-Layer Feedback Queue (MLFQ) algorithm which uses several queues with different quanta. The most important weakness of this method is the inability to define the optimized the number of the queues and quantum of each queue. This weakness has been improved in IMLFQ scheduling algorithm. Number of the queues and quantum of each queue affect the response time directly. In this paper, we review the IMLFQ algorithm for solving these problems and minimizing the response time. In this algorithm Recurrent Neural Network has been utilized to find both the number of queues and the optimized quantum of each queue. Also in order to prevent any probable faults in processes' response time computation, a new fault tolerant approach has been presented. In this approach we use combinational software redundancy to prevent the any probable faults. The experimental results show that using the IMLFQ algorithm results in better response time in comparison with other scheduling algorithms also by using fault tolerant mechanism we improve IMLFQ performance.

Conjunctive Surface Runoff and Groundwater Management in Salinity Soils

This research was conducted in the Lower Namkam Irrigation Project situated in the Namkam River Basin in Thailand. Degradation of groundwater quality in some areas is caused by saline soil spots beneath ground surface. However, the tail regulated gate structure on the Namkam River, a lateral stream of the Mekong River. It is aimed for maintaining water level in the river at +137.5 to +138.5 m (MSL) and flow to the irrigation canals based on a gravity system since July 2009. It might leach some saline soil spots from underground to soil surface if lack of understanding of the conjunctive surface water and groundwater behaviors. This research has been conducted by continuously the observing of both shallow and deep groundwater level and quality from existing observation wells. The simulation of surface water was carried out using a hydrologic modeling system (HEC-HMS) to compute the ungauged side flow catchments as the lateral flows for the river system model (HEC-RAS). The constant water levels in the upstream of the operated gate caused a slight rising up of shallow groundwater level when compared to the water table. However, the groundwater levels in the confined aquifers remained less impacted than in the shallow aquifers but groundwater levels in late of wet season in some wells were higher than the phreatic surface. This causes salinization of the groundwater at the soil surface and might affect some crops. This research aims for the balance of water stage in the river and efficient groundwater utilization in this area.

Manufacturers-Retailers: The New Actor in the U.S. Furniture Industry. Characteristics and Implications for the Chinese Industry

Since the 1990s the American furniture industry faces a transition period. Manufacturers, one of its most important actors made its entrance into the retail industry. This shift has had deep consequences not only for the American furniture industry as a whole, but also for other international furniture industries, especially the Chinese. The present work aims to analyze this actor based on the distinction provided by the Global Commodity Chain Theory. It stresses its characteristics, structure, operational way and importance for both the U.S. and the Chinese furniture industries.

Application of Sensory Thermography as Measuring Method to Study Median Nerve Temperatures

This paper presents an experimental case using sensory thermography to describe temperatures behavior on median nerve once an activity of repetitive motion was done. Thermography is a noninvasive technique without biological hazard and not harm at all times and has been applied in many experiments to seek for temperature patterns that help to understand diseases like cancer and cumulative trauma disorders (CTD’s). An infrared sensory thermography technology was developed to execute this study. Three women in good shape were selected for the repetitive motion tests for 4 days, two right-handed women and 1 left handed woman, two sensory thermographers were put on both median nerve wrists to get measures. The evaluation time was of 3 hours 30 minutes in a controlled temperature, 20 minutes of stabilization time at the beginning and end of the operation. Temperatures distributions are statistically evaluated and showed similar temperature patterns behavior.

Groundwater Contamination due to Bhalaswa Landfill Site in New Delhi

Sampling and analysis of leachate from Bhalaswa landfill and groundwater samples from nearby locations, clearly indicated the likely contamination of groundwater due to landfill leachate. The results of simulation studies carried out for the migration of Chloride from landfill shows that the simulation results are in consonance with the observed concentration of Chloride in the vicinity of landfill facility. The solid waste disposal system presently being practiced in Delhi consists of mere dumping of wastes generated, at three locations Bhalaswa, Ghazipur, and Okhla without any regard to proper care for the protection of surrounding environment. Bhalaswa landfill site in Delhi, which is being operated as a dump site, is expected to become cause of serious groundwater pollution in its vicinity. The leachate from Bhalaswa landfill was found to be having a high concentration of chlorides, as well as DOC, COD. The present study was undertaken to determine the likely concentrations of principle contaminants in the groundwater over a period of time due to the discharge of such contaminants from landfill leachates to the underlying groundwater. The observed concentration of chlorides in the groundwater within 75m of the radius of landfill facility was found to be in consonance with the simulated concentration of chloride in groundwater considering one dimensional transport model, with finite mass of contaminant source. Governing equation of contaminant transport involving advection and diffusion-dispersion was solved in matlab7.0 using finite difference method.

Dynamics In Production Processes

An increasingly dynamic and complex environment poses huge challenges to production enterprises, especially with regards to logistics. The Logistic Operating Curve Theory, developed at the Institute of Production Systems and Logistics (IFA) of the Leibniz University of Hanover, is a recognized approach to describing logistic interactions, nevertheless, it reaches its limits when it comes to the dynamic aspects. In order to facilitate a timely and optimal Logistic Positioning a method is developed for quickly and reliably identifying dynamic processing states.

High Order Cascade Multibit ΣΔ Modulator for Wide Bandwidth Applications

A wideband 2-1-1 cascaded ΣΔ modulator with a single-bit quantizer in the two first stages and a 4-bit quantizer in the final stage is developed. To reduce sensitivity of digital-to-analog converter (DAC) nonlinearities in the feedback of the last stage, dynamic element matching (DEM) is introduced. This paper presents two modelling approaches: The first is MATLAB description and the second is VHDL-AMS modelling of the proposed architecture and exposes some high-level-simulation results allowing a behavioural study. The detail of both ideal and non-ideal behaviour modelling are presented. Then, the study of the effect of building blocks nonidealities is presented; especially the influences of nonlinearity, finite operational amplifier gain, amplifier slew rate limitation and capacitor mismatch. A VHDL-AMS description presents a good solution to predict system-s performances and can provide sensitivity curves giving the impact of nonidealities on the system performance.

Simulation Study of Radial Heat and Mass Transfer Inside a Fixed Bed Catalytic Reactor

A rigorous two-dimensional model is developed for simulating the operation of a less-investigated type steam reformer having a considerably lower operating Reynolds number, higher tube diameter, and non-availability of extra steam in the feed compared with conventional steam reformers. Simulation results show that reasonable predictions can only be achieved when certain correlations for wall to fluid heat transfer equations are applied. Due to severe operating conditions, in all cases, strong radial temperature gradients inside the reformer tubes have been found. Furthermore, the results show how a certain catalyst loading profile will affect the operation of the reformer.

Hybrid Prefix Adder Architecture for Minimizing the Power Delay Product

Parallel Prefix addition is a technique for improving the speed of binary addition. Due to continuing integrating intensity and the growing needs of portable devices, low-power and highperformance designs are of prime importance. The classical parallel prefix adder structures presented in the literature over the years optimize for logic depth, area, fan-out and interconnect count of logic circuits. In this paper, a new architecture for performing 8-bit, 16-bit and 32-bit Parallel Prefix addition is proposed. The proposed prefix adder structures is compared with several classical adders of same bit width in terms of power, delay and number of computational nodes. The results reveal that the proposed structures have the least power delay product when compared with its peer existing Prefix adder structures. Tanner EDA tool was used for simulating the adder designs in the TSMC 180 nm and TSMC 130 nm technologies.

Efficient Variants of Square Contour Algorithm for Blind Equalization of QAM Signals

A new distance-adjusted approach is proposed in which static square contours are defined around an estimated symbol in a QAM constellation, which create regions that correspond to fixed step sizes and weighting factors. As a result, the equalizer tap adjustment consists of a linearly weighted sum of adaptation criteria that is scaled by a variable step size. This approach is the basis of two new algorithms: the Variable step size Square Contour Algorithm (VSCA) and the Variable step size Square Contour Decision-Directed Algorithm (VSDA). The proposed schemes are compared with existing blind equalization algorithms in the SCA family in terms of convergence speed, constellation eye opening and residual ISI suppression. Simulation results for 64-QAM signaling over empirically derived microwave radio channels confirm the efficacy of the proposed algorithms. An RTL implementation of the blind adaptive equalizer based on the proposed schemes is presented and the system is configured to operate in VSCA error signal mode, for square QAM signals up to 64-QAM.

B-VIS Service-oriented Middleware for RFID Sensor Network

One of the most importance of intelligence in-car and roadside systems is the cooperative vehicle-infrastructure system. In Thailand, ITS technologies are rapidly growing and real-time vehicle information is considerably needed for ITS applications; for example, vehicle fleet tracking and control and road traffic monitoring systems. This paper defines the communication protocols and software design for middleware components of B-VIS (Burapha Vehicle-Infrastructure System). The proposed B-VIS middleware architecture serves the needs of a distributed RFID sensor network and simplifies some intricate details of several communication standards.

Development of a Support Tool for Cost and Schedule Integration Managment at Program Level

There has been gradual progress of late in construction projects, particularly in big-scale megaprojects. Due to the long-term construction period, however, with large-scale budget investment, lack of construction management technologies, and increase in the incomplete elements of project schedule management, a plan to conduct efficient operations and to ensure business safety is required. In particular, as the project management information system (PMIS) is meant for managing a single project centering on the construction phase, there is a limitation in the management of program-scale businesses like megaprojects. Thus, a program management information system (PgMIS) that includes program-level management technologies is needed to manage multiple projects. In this study, a support tool was developed for managing the cost and schedule information occurring in the construction phase, at the program level. In addition, a case study on the developed support tool was conducted to verify the usability of the system. With the use of the developed support tool program, construction managers can monitor the progress of the entire project and of the individual subprojects in real time.

Coordination between SC and SVC for Voltage Stability Improvement

At any point of time, a power system operating condition should be stable, meeting various operational criteria and it should also be secure in the event of any credible contingency. Present day power systems are being operated closer to their stability limits due to economic and environmental constraints. Maintaining a stable and secure operation of a power system is therefore a very important and challenging issue. Voltage instability has been given much attention by power system researchers and planners in recent years, and is being regarded as one of the major sources of power system insecurity. Voltage instability phenomena are the ones in which the receiving end voltage decreases well below its normal value and does not come back even after setting restoring mechanisms such as VAR compensators, or continues to oscillate for lack of damping against the disturbances. Reactive power limit of power system is one of the major causes of voltage instability. This paper investigates the effects of coordinated series capacitors (SC) with static VAR compensators (SVC) on steady-state voltage stability of a power system. Also, the influence of the presence of series capacitor on static VAR compensator controller parameters and ratings required to stabilize load voltages at certain values are highlighted.

Ground System Software for Unmanned Aerial Vehicles on Android Device

A Ground Control System (GCS), which controls Unmanned Aerial Vehicles (UAVs) and monitors their missionrelated data, is one of the major components of UAVs. In fact, some traditional GCSs were built on an expensive, complicated hardware infrastructure with workstations and PCs. In contrast, a GCS on a portable device – such as an Android phone or tablet – takes advantage of its light-weight hardware and the rich User Interface supported by the Android Operating System. We implemented that kind of GCS and called it Ground System Software (GSS) in this paper. In operation, our GSS communicates with UAVs or other GSS via TCP/IP connection to get mission-related data, visualizes it on the device-s screen, and saves the data in its own database. Our study showed that this kind of system will become a potential instrument in UAV-related systems and this kind of topic will appear in many research studies in the near future.

Simulation of a Process Design Model for Anaerobic Digestion of Municipal Solid Wastes

Anaerobic Digestion has become a promising technology for biological transformation of organic fraction of the municipal solid wastes (MSW). In order to represent the kinetic behavior of such biological process and thereby to design a reactor system, development of a mathematical model is essential. Addressing this issue, a simplistic mathematical model has been developed for anaerobic digestion of MSW in a continuous flow reactor unit under homogeneous steady state condition. Upon simulated hydrolysis, the kinetics of biomass growth and substrate utilization rate are assumed to follow first order reaction kinetics. Simulation of this model has been conducted by studying sensitivity of various process variables. The model was simulated using typical kinetic data of anaerobic digestion MSW and typical MSW characteristics of Kolkata. The hydraulic retention time (HRT) and solid retention time (SRT) time were mainly estimated by varying different model parameters like efficiency of reactor, influent substrate concentration and biomass concentration. Consequently, design table and charts have also been prepared for ready use in the actual plant operation.