Occurrence of Foreign Matter in Food: Applied Identification Method - Association of Official Agricultural Chemists (AOAC) and Food and Drug Administration (FDA)

The aim of this study is to present the results of a retrospective survey on the foreign matter found in foods analyzed at the Adolfo Lutz Institute, from July 2001 to July 2015. All the analyses were conducted according to the official methods described on Association of Official Agricultural Chemists (AOAC) for the micro analytical procedures and Food and Drug Administration (FDA) for the macro analytical procedures. The results showed flours, cereals and derivatives such as baking and pasta products were the types of food where foreign matters were found more frequently followed by condiments and teas. Fragments of stored grains insects, its larvae, nets, excrement, dead mites and rodent excrement were the most foreign matter found in food. Besides, foreign matters that can cause a physical risk to the consumer’s health such as metal, stones, glass, wood were found but rarely. Miscellaneous (shell, sand, dirt and seeds) were also reported. There are a lot of extraneous materials that are considered unavoidable since are something inherent to the product itself, such as insect fragments in grains. In contrast, there are avoidable extraneous materials that are less tolerated because it is preventable with the Good Manufacturing Practice. The conclusion of this work is that although most extraneous materials found in food are considered unavoidable it is necessary to keep the Good Manufacturing Practice throughout the food processing as well as maintaining a constant surveillance of the production process in order to avoid accidents that may lead to occurrence of these extraneous materials in food.

Evaluation of Research in the Field of Energy Efficiency and MCA Methods Using Publications Databases

Energy is a fundamental component in sustainability, the access and use of this resource is related with economic growth, social improvements, and environmental impacts. In this sense, energy efficiency has been studied as a factor that enhances the positive impacts of energy in communities; however, the implementation of efficiency requires strong policy and strategies that usually rely on individual measures focused in independent dimensions. In this paper, the problem of energy efficiency as a multi-objective problem is studied, using scientometric analysis to discover trends and patterns that allow to identify the main variables and study approximations related with a further development of models to integrate energy efficiency and MCA into policy making for small communities.

Prediction Modeling of Compression Properties of a Knitted Sportswear Fabric Using Response Surface Method

Different knitted structures and knitted parameters play a vital role in the stretch and recovery management of compression sportswear in addition to the materials use to generate this stretch and recovery behavior of the fabric. The present work was planned to predict the different performance indicators of a compression sportswear fabric with some ground parameters i.e. base yarn stitch length (polyester as base yarn and spandex as plating yarn involve to make a compression fabric) and linear density of the spandex which is a key material of any sportswear fabric. The prediction models were generated by response surface method for performance indicators such as stretch & recovery percentage, compression generated by the garment on body, total elongation on application of high power force and load generated on certain percentage extension in fabric. Certain physical properties of the fabric were also modeled using these two parameters.

Performance of Piezoelectric Cooling Fan with Rectangular Blade

Using the numerical and experimental methods, this paper discusses some primary studies on the vibration and cooling performances of the piezoelectric cooling fan with the rectangular blade. When the fan works at its natural frequency, the vibrating displacement is largest and the cooling performance is best. Due to the vibration behavior, the cooling performance is affected by the geometry, material property, and working frequency of the piezoelectric cooling fan. 

The Relationship between the Environmental and Financial Performance of Australian Electricity Producers

The present study focuses on the environmental performance of the companies in the electricity-producing sector and its relationship with their financial performance. We will review the major studies that examined the relationship between the environmental and financial performance of firms in various industries. While the classical economic debates consider the environmental friendly activities costly and harmful to a firm’s profitability, it is claimed that firms will be rewarded with higher profitability in long run through the investments in environmental friendly activities. In this context, prior studies have examined the relationship between the environmental and financial performance of firms operating in different industry sectors. Our study will employ an environmental indicator to increase the accuracy of the results and be employed as an independent variable in our developed econometric model to evaluate the impact of the financial performance of the firms on their environmental friendly activities in the context of companies operating in the Australian electricity-producing sector. As a result, we expect our methodology to contribute to the literature and the findings of the study will help us to provide recommendations and policy implications to the electricity producers.

Forecasting Exchange Rate between Thai Baht and the US Dollar Using Time Series Analysis

The objective of this research is to forecast the monthly exchange rate between Thai baht and the US dollar and to compare two forecasting methods. The methods are Box-Jenkins’ method and Holt’s method. Results show that the Box-Jenkins’ method is the most suitable method for the monthly Exchange Rate between Thai Baht and the US Dollar. The suitable forecasting model is ARIMA (1,1,0)  without constant and the forecasting equation is Yt = Yt-1 + 0.3691 (Yt-1 - Yt-2) When Yt  is the time series data at time t, respectively.

Development of Tensile Stress-Strain Relationship for High-Strength Steel Fiber Reinforced Concrete

This paper provides a tensile stress-strain (σ-ε) relationship for High-Strength Steel Fiber Reinforced Concrete (HSFRC). Load-deflection (P-δ) behavior of HSFRC beams tested under four-point flexural load were used with inverse analysis to calculate the tensile σ-ε relationship for various tested concrete grades (70 and 90MPa) containing 60 kg/m3 (0.76 %) of hook-end steel fibers. A first estimate of the tensile (σ-ε) relationship is obtained using RILEM TC 162-TDF and other methods available in literature, frequently used for determining tensile σ-ε relationship of Normal-Strength Concrete (NSC) Non-Linear Finite Element Analysis (NLFEA) package ABAQUS® is used to model the beam’s P-δ behavior. The results have shown that an element-size dependent tensile σ-ε relationship for HSFRC can be successfully generated and adopted for further analyses involving HSFRC structures.

Speech Enhancement of Vowels Based on Pitch and Formant Frequency

Numerous signal processing based speech enhancement systems have been proposed to improve intelligibility in the presence of noise. Traditionally, studies of neural vowel encoding have focused on the representation of formants (peaks in vowel spectra) in the discharge patterns of the population of auditory-nerve (AN) fibers. A method is presented for recording high-frequency speech components into a low-frequency region, to increase audibility for hearing loss listeners. The purpose of the paper is to enhance the formant of the speech based on the Kaiser window. The pitch and formant of the signal is based on the auto correlation, zero crossing and magnitude difference function. The formant enhancement stage aims to restore the representation of formants at the level of the midbrain. A MATLAB software’s are used for the implementation of the system with low complexity is developed.

Modified Scaling-Free CORDIC Based Pipelined Parallel MDC FFT and IFFT Architecture for Radix 2^2 Algorithm

An innovative approach to develop modified scaling free CORDIC based two parallel pipelined Multipath Delay Commutator (MDC) FFT and IFFT architectures for radix 22 FFT algorithm is presented. Multipliers and adders are the most important data paths in FFT and IFFT architectures. Multipliers occupy high area and consume more power. In order to optimize the area and power overhead, modified scaling-free CORDIC based complex multiplier is utilized in the proposed design. In general twiddle factor values are stored in RAM block. In the proposed work, modified scaling-free CORDIC based twiddle factor generator unit is used to generate the twiddle factor and efficient switching units are used. In addition to this, four point FFT operations are performed without complex multiplication which helps to reduce area and power in the last two stages of the pipelined architectures. The design proposed in this paper is based on multipath delay commutator method. The proposed design can be extended to any radix 2n based FFT/IFFT algorithm to improve the throughput. The work is synthesized using Synopsys design Compiler using TSMC 90-nm library. The proposed method proves to be better compared to the reference design in terms of area, throughput and power consumption. The comparative analysis of the proposed design with Xilinx FPGA platform is also discussed in the paper.

A Method of Representing Knowledge of Toolkits in a Pervasive Toolroom Maintenance System

The learning process needs to be so pervasive to impart the quality in acquiring the knowledge about a subject by making use of the advancement in the field of information and communication systems. However, pervasive learning paradigms designed so far are system automation types and they lack in factual pervasive realm. Providing factual pervasive realm requires subtle ways of teaching and learning with system intelligence. Augmentation of intelligence with pervasive learning necessitates the most efficient way of representing knowledge for the system in order to give the right learning material to the learner. This paper presents a method of representing knowledge for Pervasive Toolroom Maintenance System (PTMS) in which a learner acquires sublime knowledge about the various kinds of tools kept in the toolroom and also helps for effective maintenance of the toolroom. First, we explicate the generic model of knowledge representation for PTMS. Second, we expound the knowledge representation for specific cases of toolkits in PTMS. We have also presented the conceptual view of knowledge representation using ontology for both generic and specific cases. Third, we have devised the relations for pervasive knowledge in PTMS. Finally, events are identified in PTMS which are then linked with pervasive data of toolkits based on relation formulated. The experimental environment and case studies show the accuracy and efficient knowledge representation of toolkits in PTMS.

A Conceptual Framework and a Mathematical Equation for Managing Construction-Material Waste and Cost Overruns

The problem of construction material waste remains unresolved, as a significant percentage of the materials delivered to some project sites end up as waste which might result in additional project cost. Cost overrun is a problem which affects 90% of the completed projects in the world. The argument on how to eliminate it has been on-going for the past 70 years, but there is neither substantial improvement nor significant solution for mitigating its detrimental effects. Research evidence has proposed various construction cost overruns and material-waste management approaches; nonetheless, these studies failed to give a clear indication on the framework and the equation for managing construction material waste and cost overruns. Hence, this research aims to develop a conceptual framework and a mathematical equation for managing material waste and cost overrun in the construction industry. The paper adopts the desktop methodological approach. This involves comparing the causes of material waste and those of cost overruns from the literature to determine the possible relationship. The review revealed a relationship between material waste and cost overrun that; increase in material waste would result to a corresponding increase in the amount of cost overrun at both the pre-contract and the post contract stages of a project. It was found from the equation that achieving an effective construction material waste management must ensure a “Good Quality-of-Planning, Estimating, and Design Management” and a “Good Quality- of-Construction, Procurement and Site Management”; a decrease in “Design Complexity” which would reduce “Material Waste” and subsequently reduce the amount of cost overrun by 86.74%. The conceptual framework and the mathematical equation developed in this study are recommended to the professionals of the construction industry.

Software Engineering Inspired Cost Estimation for Process Modelling

Up to this point business process management projects in general and business process modelling projects in particular could not rely on a practical and scientifically validated method to estimate cost and effort. Especially the model development phase is not covered by a cost estimation method or model. Further phases of business process modelling starting with implementation are covered by initial solutions which are discussed in the literature. This article proposes a method of filling this gap by deriving a cost estimation method from available methods in similar domains namely software development or software engineering. Software development is regarded as closely similar to process modelling as we show. After the proposition of this method different ideas for further analysis and validation of the method are proposed. We derive this method from COCOMO II and Function Point which are established methods of effort estimation in the domain of software development. For this we lay out similarities of the software development process and the process of process modelling which is a phase of the Business Process Management life-cycle.

Acetalization of Carbonyl Compounds by Using Al2 (HPO4)3 under Green Condition Mg HPO4

Al2(HPO4)3 was easily prepared and used as a solid acid in acetalization of carbonyl compounds at room temperature and under solvent-free conditions. The protection was done in short reaction times and in good to high isolated yields. The cheapness and availability of this reagent with easy procedure and work-up make this method attractive for the organic synthesis.

Influence of the Low Frequency Ultrasound on the Cadmium (II) Biosorption by an Ecofriendly Biocomposite (Extraction Solid Waste of Ammi visnaga / Calcium Alginate): Kinetic Modeling

In the present study, an ecofriendly biocomposite namely calcium alginate immobilized Ammi Visnaga (Khella) extraction waste (SWAV/CA) was prepared by electrostatic extrusion method and used on the cadmium biosorption from aqueous phase with and without the assistance of ultrasound in batch conditions. The influence of low frequency ultrasound (37 and 80 KHz) on the cadmium biosorption kinetics was studied. The obtained results show that the ultrasonic irradiation significantly enhances and improves the efficiency of the cadmium removal. The Pseudo first order, Pseudo-second-order, Intraparticle diffusion, and Elovich models were evaluated using the non-linear curve fitting analysis method. Modeling of kinetic results shows that biosorption process is best described by the pseudo-second order and Elovich, in both the absence and presence of ultrasound.

The Appropriateness of Antibiotic Prescribing within Dundee Dental Hospital

Background: The societal impact of antibiotic resistance is a major public health concern. The increase in incidence of resistant bacteria can ultimately be fatal. Objective: To analyse the appropriateness of antibiotic prescribing in Dundee Dental Hospital, ultimately improving the safety and quality of patient care. Methods: Two examiners independently crosschecked approximately fifty consecutive prescriptions, and corresponding patient case notes, for three data collection cycles between August 2014 – September 2015. The Scottish Dental Clinical Effectiveness Program (SDCEP) Drug Prescribing for Dentistry guidelines was the standard utilised. The criteria: clinical justification, regime justification and review arrangements was measured, and compared to the standard. Results: Cycle one revealed 42% of antibiotic prescriptions were appropriate. Interventions included: multiple staff meetings, introduction of a checklist attached to the prescription pack, and production of patient leaflets explaining indications for antibiotics. Cycle two and three revealed 44%, and 30% compliance, respectively. Conclusion: The results of the audit have yet to meet target standards set out in prescribing guidelines. However, steps are being taken and change has occurred on a cultural level.

Out-of-Plane Bending Properties of Out-of-Autoclave Thermosetting Prepregs during Forming Processes

In order to predict and model wrinkling which is caused by out of plane deformation due to compressive loading in the plane of the material during composite prepregs forming, it is necessary to quantitatively understand the relative magnitude of the bending stiffness. This study aims to examine the bending properties of out-of-autoclave (OOA) thermosetting prepreg under vertical cantilever test condition. A direct method for characterizing the bending behavior of composite prepregs was developed. The results from direct measurement were compared with results derived from an image-processing procedure that analyses the captured image during the vertical bending test. A numerical simulation was performed using ABAQUS to confirm the bending stiffness value.

Optimizing Resource Allocation and Indoor Location Using Bluetooth Low Energy

The recent tendency of ”Internet of Things” (IoT) has developed in the last years, causing the emergence of innovative communication methods among multiple devices. The appearance of Bluetooth Low Energy (BLE) has allowed a push to IoT in relation to smartphones. In this moment, a set of new applications related to several topics like entertainment and advertisement has begun to be developed but not much has been done till now to take advantage of the potential that these technologies can offer on many business areas and in everyday tasks. In the present work, the application of BLE technology and smartphones is proposed on some business areas related to the optimization of resource allocation in huge facilities like airports. An indoor location system has been developed through triangulation methods with the use of BLE beacons. The described system can be used to locate all employees inside the building in such a way that any task can be automatically assigned to a group of employees. It should be noted that this system cannot only be used to link needs with employees according to distances, but it also takes into account other factors like occupation level or category. In addition, it has been endowed with a security system to manage business and personnel sensitive data. The efficiency of communications is another essential characteristic that has been taken into account in this work.

A Discrete Element Method Centrifuge Model of Monopile under Cyclic Lateral Loads

This paper presents the data of a series of two-dimensional Discrete Element Method (DEM) simulations of a large-diameter rigid monopile subjected to cyclic loading under a high gravitational force. At present, monopile foundations are widely used to support the tall and heavy wind turbines, which are also subjected to significant from wind and wave actions. A safe design must address issues such as rotations and changes in soil stiffness subject to these loadings conditions. Design guidance on the issue is limited, so are the availability of laboratory and field test data. The interpretation of these results in sand, such as the relation between loading and displacement, relies mainly on empirical correlations to pile properties. Regarding numerical models, most data from Finite Element Method (FEM) can be found. They are not comprehensive, and most of the FEM results are sensitive to input parameters. The micro scale behaviour could change the mechanism of the soil-structure interaction. A DEM model was used in this paper to study the cyclic lateral loads behaviour. A non-dimensional framework is presented and applied to interpret the simulation results. The DEM data compares well with various set of published experimental centrifuge model test data in terms of lateral deflection. The accumulated permanent pile lateral displacements induced by the cyclic lateral loads were found to be dependent on the characteristics of the applied cyclic load, such as the extent of the loading magnitudes and directions.

Effectiveness of Working Memory Training on Cognitive Flexibility

The aim of this study was to investigate the effectiveness of memory training exercise on cognitive flexibility. The method of this study was experimental. The statistical population selected 40 students 14 years old, samples were chosen by available sampling method and then they were replaced in experimental (training program) group and control group randomly and answered to Wisconsin Card Sorting Test; covariance test results indicated that there were a significant in post-test scores of experimental group (p

3D Shape Knitting: Loop Alignment on a Surface with Positive Gaussian Curvature

This paper aims at manipulating loop alignment in knitting a three-dimensional (3D) shape by its geometry. Two loop alignment methods are introduced to handle a surface with positive Gaussian curvature. As weft knitting is a two-dimensional (2D) knitting mechanism that the knitting cam carrying the feeders moves in two directions only, left and right, the knitted fabric generated grows in width and length but not in depth. Therefore, a 3D shape is required to be flattened to a 2D plane with surface area preserved for knitting. On this flattened plane, dimensional measurements are taken for loop alignment. The way these measurements being taken derived two different loop alignment methods. In this paper, only plain knitted structure was considered. Each knitted loop was taken as a basic unit for loop alignment in order to achieve the required geometric dimensions, without the inclusion of other stitches which give textural dimensions to the fabric. Two loop alignment methods were experimented and compared. Only one of these two can successfully preserve the dimensions of the shape.