A Novel QoS Optimization Architecture for 4G Networks

4G Communication Networks provide heterogeneous wireless technologies to mobile subscribers through IP based networks and users can avail high speed access while roaming across multiple wireless channels; possible by an organized way to manage the Quality of Service (QoS) functionalities in these networks. This paper proposes the idea of developing a novel QoS optimization architecture that will judge the user requirements and knowing peak times of services utilization can save the bandwidth/cost factors. The proposed architecture can be customized according to the network usage priorities so as to considerably improve a network-s QoS performance.

Effects of Human Capital and Openness on Economic Growth of Developed and Developing Countries: A Panel Data Analysis

Technology transfer by international trade and foreign direct investment is the most important positive outcome of open economy. It is widely accepted that new technology and knowledge have an important role in enhancing economic growth. Human capital is the other important factor assisting economic growth. In this study, the role of human capital in the growth process is examined in a view of new endogenous growth theory emphasizing on the technology transfer resulting from international trade. Using the panel data of 10 developed and 10 developing countries, impact of human capital and openness on the rate of economic growth of different countries is analysed. Evidence suggests the view that human capital and openness contribute to the economic growth in both developing and developed countries, but with different rates.

Non-Destructive Evaluation of Launch Tube Welds with Radiography

The non-destructive testing of launch tube weld with radiography was investigated and evaluated with AWS D1.1 standard. The paper started with preparation of launch tube and radiographic inspection. X-Ray inspection then was done and gotten the result. The judgment of inspection results were concluded by certified person and finally, the evaluation with AWS D1.1 standard was conducted as well. The result shown that weld position P1 was not conformed to AWS D1.1 which allowed size of incomplete penetration did not exceed 4 mm. The other welds were corresponded to as mentioned standard. Additionally, the corrective actions for incomplete penetration either provided for future actions.

A Low Cost Knowledge Base System Framework for Design of Deep Drawing Die

In this paper a low cost knowledge base system (KBS) framework is proposed for design of deep drawing die and procedure for developing system modules. The task of building the system is structured into different modules for major activities of design of deep drawing die. A manufacturability assessment module of the proposed framework is developed to check the manufacturability of deep drawn parts. The technological knowledge is represented by using IF- THEN rules and it is coded in AutoLISP language. The module is designed to be loaded into the prompt area of AutoCAD. The cost of implementation of proposed system makes it affordable for small and medium scale sheet metal industries.

N-Sun Decomposition of Complete Graphs and Complete Bipartite Graphs

Graph decompositions are vital in the study of combinatorial design theory. Given two graphs G and H, an H-decomposition of G is a partition of the edge set of G into disjoint isomorphic copies of H. An n-sun is a cycle Cn with an edge terminating in a vertex of degree one attached to each vertex. In this paper we have proved that the complete graph of order 2n, K2n can be decomposed into n-2 n-suns, a Hamilton cycle and a perfect matching, when n is even and for odd case, the decomposition is n-1 n-suns and a perfect matching. For an odd order complete graph K2n+1, delete the star subgraph K1, 2n and the resultant graph K2n is decomposed as in the case of even order. The method of building n-suns uses Walecki's construction for the Hamilton decomposition of complete graphs. A spanning tree decomposition of even order complete graphs is also discussed using the labeling scheme of n-sun decomposition. A complete bipartite graph Kn, n can be decomposed into n/2 n-suns when n/2 is even. When n/2 is odd, Kn, n can be decomposed into (n-2)/2 n-suns and a Hamilton cycle.

Identification of Most Frequently Occurring Lexis in Winnings-announcing Unsolicited Bulke-mails

e-mail has become an important means of electronic communication but the viability of its usage is marred by Unsolicited Bulk e-mail (UBE) messages. UBE consists of many types like pornographic, virus infected and 'cry-for-help' messages as well as fake and fraudulent offers for jobs, winnings and medicines. UBE poses technical and socio-economic challenges to usage of e-mails. To meet this challenge and combat this menace, we need to understand UBE. Towards this end, the current paper presents a content-based textual analysis of nearly 3000 winnings-announcing UBE. Technically, this is an application of Text Parsing and Tokenization for an un-structured textual document and we approach it using Bag Of Words (BOW) and Vector Space Document Model techniques. We have attempted to identify the most frequently occurring lexis in the winnings-announcing UBE documents. The analysis of such top 100 lexis is also presented. We exhibit the relationship between occurrence of a word from the identified lexisset in the given UBE and the probability that the given UBE will be the one announcing fake winnings. To the best of our knowledge and survey of related literature, this is the first formal attempt for identification of most frequently occurring lexis in winningsannouncing UBE by its textual analysis. Finally, this is a sincere attempt to bring about alertness against and mitigate the threat of such luring but fake UBE.

Application of Data Mining Tools to Predicate Completion Time of a Project

Estimation time and cost of work completion in a project and follow up them during execution are contributors to success or fail of a project, and is very important for project management team. Delivering on time and within budgeted cost needs to well managing and controlling the projects. To dealing with complex task of controlling and modifying the baseline project schedule during execution, earned value management systems have been set up and widely used to measure and communicate the real physical progress of a project. But it often fails to predict the total duration of the project. In this paper data mining techniques is used predicting the total project duration in term of Time Estimate At Completion-EAC (t). For this purpose, we have used a project with 90 activities, it has updated day by day. Then, it is used regular indexes in literature and applied Earned Duration Method to calculate time estimate at completion and set these as input data for prediction and specifying the major parameters among them using Clem software. By using data mining, the effective parameters on EAC and the relationship between them could be extracted and it is very useful to manage a project with minimum delay risks. As we state, this could be a simple, safe and applicable method in prediction the completion time of a project during execution.

Knowledge Management Applied to Forensic Sciences

This paper presents initiatives of Knowledge Management (KM) applied to Forensic Sciences field, especially developed at the Forensic Science Institute of the Brazilian Federal Police. Successful projects, related to knowledge sharing, drugs analysis and environmental crimes, are reported in the KM perspective. The described results are related to: a) the importance of having an information repository, like a digital library, in such a multidisciplinary organization; b) the fight against drug dealing and environmental crimes, enabling the possibility to map the evolution of crimes, drug trafficking flows, and the advance of deforestation in Amazon rain forest. Perspectives of new KM projects under development and studies are also presented, tracing an evolution line of the KM view at the Forensic Science Institute.

A 3D Approach for Extraction of the Coronaryartery and Quantification of the Stenosis

Segmentation and quantification of stenosis is an important task in assessing coronary artery disease. One of the main challenges is measuring the real diameter of curved vessels. Moreover, uncertainty in segmentation of different tissues in the narrow vessel is an important issue that affects accuracy. This paper proposes an algorithm to extract coronary arteries and measure the degree of stenosis. Markovian fuzzy clustering method is applied to model uncertainty arises from partial volume effect problem. The algorithm employs: segmentation, centreline extraction, estimation of orthogonal plane to centreline, measurement of the degree of stenosis. To evaluate the accuracy and reproducibility, the approach has been applied to a vascular phantom and the results are compared with real diameter. The results of 10 patient datasets have been visually judged by a qualified radiologist. The results reveal the superiority of the proposed method compared to the Conventional thresholding Method (CTM) on both datasets.

Blur and Ringing Artifact Measurement in Image Compression using Wavelet Transform

Quality evaluation of an image is an important task in image processing applications. In case of image compression, quality of decompressed image is also the criterion for evaluation of given coding scheme. In the process of compression -decompression various artifacts such as blocking artifacts, blur artifact, ringing or edge artifact are observed. However quantification of these artifacts is a difficult task. We propose here novel method to quantify blur and ringing artifact in an image.

Detecting Community Structure in Amino Acid Interaction Networks

In this paper we introduce the notion of protein interaction network. This is a graph whose vertices are the protein-s amino acids and whose edges are the interactions between them. Using a graph theory approach, we observe that according to their structural roles, the nodes interact differently. By leading a community structure detection, we confirm this specific behavior and describe thecommunities composition to finally propose a new approach to fold a protein interaction network.

Optimal Current Control of Externally Excited Synchronous Machines in Automotive Traction Drive Applications

The excellent suitability of the externally excited synchronous machine (EESM) in automotive traction drive applications is justified by its high efficiency over the whole operation range and the high availability of materials. Usually, maximum efficiency is obtained by modelling each single loss and minimizing the sum of all losses. As a result, the quality of the optimization highly depends on the precision of the model. Moreover, it requires accurate knowledge of the saturation dependent machine inductances. Therefore, the present contribution proposes a method to minimize the overall losses of a salient pole EESM and its inverter in steady state operation based on measurement data only. Since this method does not require any manufacturer data, it is well suited for an automated measurement data evaluation and inverter parametrization. The field oriented control (FOC) of an EESM provides three current components resp. three degrees of freedom (DOF). An analytic minimization of the copper losses in the stator and the rotor (assuming constant inductances) is performed and serves as a first approximation of how to choose the optimal current reference values. After a numeric offline minimization of the overall losses based on measurement data the results are compared to a control strategy that satisfies cos (ϕ) = 1.

Red Diode Laser in the Treatment of Epidermal Diseases in PDT

The process of laser absorption in the skin during laser irradiation was a critical point in medical application treatments. Delivery the correct amount of laser light is a critical element in photodynamic therapy (PDT). More amounts of laser light able to affect tissues in the skin and small amount not able to enhance PDT procedure in skin. The knowledge of the skin tone laser dependent distribution of 635 nm radiation and its penetration depth in skin is a very important precondition for the investigation of advantage laser induced effect in (PDT) in epidermis diseases (psoriasis). The aim of this work was to estimate an optimum effect of diode laser (635 nm) on the treatment of epidermis diseases in different color skin. Furthermore, it is to improve safety of laser in PDT in epidermis diseases treatment. Advanced system analytical program (ASAP) which is a new approach in investigating the PDT, dependent on optical properties of different skin color was used in present work. A two layered Realistic Skin Model (RSM); stratum corneum and epidermal with red laser (635 nm, 10 mW) were used for irradiative transfer to study fluence and absorbance in different penetration for various human skin colors. Several skin tones very fair, fair, light, medium and dark are used to irradiative transfer. This investigation involved the principles of laser tissue interaction when the skin optically injected by a red laser diode. The results demonstrated that the power characteristic of a laser diode (635 nm) can affect the treatment of epidermal disease in various color skins. Power absorption of the various human skins were recorded and analyzed in order to find the influence of the melanin in PDT treatment in epidermal disease. A two layered RSM show that the change in penetration depth in epidermal layer of the color skin has a larger effect on the distribution of absorbed laser in the skin; this is due to the variation of the melanin concentration for each color.

Performance Appraisal System using Multifactorial Evaluation Model

Performance appraisal of employee is important in managing the human resource of an organization. With the change towards knowledge-based capitalism, maintaining talented knowledge workers is critical. However, management classification of “outstanding", “poor" and “average" performance may not be an easy decision. Besides that, superior might also tend to judge the work performance of their subordinates informally and arbitrarily especially without the existence of a system of appraisal. In this paper, we propose a performance appraisal system using multifactorial evaluation model in dealing with appraisal grades which are often express vaguely in linguistic terms. The proposed model is for evaluating staff performance based on specific performance appraisal criteria. The project was collaboration with one of the Information and Communication Technology company in Malaysia with reference to its performance appraisal process.

Knowledge Sharing based on Semantic Nets and Mereology to Avoid Risks in Manufacturing

The right information at the right time influences the enterprise and technical success. Sharing knowledge among members of a big organization may be a complex activity. And as long as the knowledge is not shared, can not be exploited by the organization. There are some mechanisms which can originate knowledge sharing. It is intended, in this paper, to trigger these mechanisms by using semantic nets. Moreover, the intersection and overlapping of terms and sub-terms, as well as their relationships will be described through the mereology science for the whole knowledge sharing system. It is proposed a knowledge system to supply to operators with the right information about a specific process and possible risks, e.g. at the assembly process, at the right time in an automated manufacturing environment, such as at the automotive industry.

Graphical Programming of Programmable Logic Controllers -Case Study for a Punching Machine-

The Programmable Logic Controller (PLC) plays a vital role in automation and process control. Grafcet is used for representing the control logic, and traditional programming languages are used for describing the pure algorithms. Grafcet is used for dividing the process to be automated in elementary sequences that can be easily implemented. Each sequence represent a step that has associated actions programmed using textual or graphical languages after case. The programming task is simplified by using a set of subroutines that are used in several steps. The paper presents an example of implementation for a punching machine for sheets and plates. The use the graphical languages the programming of a complex sequential process is a necessary solution. The state of Grafcet can be used for debugging and malfunction determination. The use of the method combined with a set of knowledge acquisition for process application reduces the downtime of the machine and improve the productivity.

An Agent-Based Scheduling Framework for Flexible Manufacturing Systems

The concept of flexible manufacturing is highly appealing in gaining a competitive edge in the market by quickly adapting to the changing customer needs. Scheduling jobs on flexible manufacturing systems (FMSs) is a challenging task of managing the available flexibility on the shop floor to react to the dynamics of the environment in real-time. In this paper, an agent-oriented scheduling framework that can be integrated with a real or a simulated FMS is proposed. This framework works in stochastic environments with a dynamic model of job arrival. It supports a hierarchical cooperative scheduling that builds on the available flexibility of the shop floor. Testing the framework on a model of a real FMS showed the capability of the proposed approach to overcome the drawbacks of the conventional approaches and maintain a near optimal solution despite the dynamics of the operational environment.

A Simple Knowledge Management Strategy Model for SMEs in Developing Countries

The area of knowledge management has been in the highlight for enterprises over the past three decades. Many enterprises would like to have knowledge management and work hard to achieve it, however they are often confused about which direction to take to be successful and this point is especially true for Small and Medium Enterprises (SMEs) in developing countries. Many large companies have realized that knowledge is one of the richest resources which an organization possesses and knowledge management is a part of the foundation for a sustainable competitive advantage. Much work has been done in the area of knowledge management, but most of it has served large enterprises. This research provides a Model of knowledge management strategy for SMEs. It is based on analysis, insights and recommendations and it is presented so that SMEs in developing countries can easily understand and implement this model.

Prediction of Watermelon Consumer Acceptability based on Vibration Response Spectrum

It is difficult to judge ripeness by outward characteristics such as size or external color. In this paper a nondestructive method was studied to determine watermelon (Crimson Sweet) quality. Responses of samples to excitation vibrations were detected using laser Doppler vibrometry (LDV) technology. Phase shift between input and output vibrations were extracted overall frequency range. First and second were derived using frequency response spectrums. After nondestructive tests, watermelons were sensory evaluated. So the samples were graded in a range of ripeness based on overall acceptability (total desired traits consumers). Regression models were developed to predict quality using obtained results and sample mass. The determination coefficients of the calibration and cross validation models were 0.89 and 0.71 respectively. This study demonstrated feasibility of information which is derived vibration response curves for predicting fruit quality. The vibration response of watermelon using the LDV method is measured without direct contact; it is accurate and timely, which could result in significant advantage for classifying watermelons based on consumer opinions.

EAAC: Energy-Aware Admission Control Scheme for Ad Hoc Networks

The decisions made by admission control algorithms are based on the availability of network resources viz. bandwidth, energy, memory buffers, etc., without degrading the Quality-of-Service (QoS) requirement of applications that are admitted. In this paper, we present an energy-aware admission control (EAAC) scheme which provides admission control for flows in an ad hoc network based on the knowledge of the present and future residual energy of the intermediate nodes along the routing path. The aim of EAAC is to quantify the energy that the new flow will consume so that it can be decided whether the future residual energy of the nodes along the routing path can satisfy the energy requirement. In other words, this energy-aware routing admits a new flow iff any node in the routing path does not run out of its energy during the transmission of packets. The future residual energy of a node is predicted using the Multi-layer Neural Network (MNN) model. Simulation results shows that the proposed scheme increases the network lifetime. Also the performance of the MNN model is presented.