Application of Pulse Doubling in Star-Connected Autotransformer Based 12-Pulse AC-DC Converter for Power Quality Improvement

This paper presents a pulse doubling technique in a 12-pulse ac-dc converter which supplies direct torque controlled motor drives (DTCIMD-s) in order to have better power quality conditions at the point of common coupling. The proposed technique increases the number of rectification pulses without significant changes in the installations and yields in harmonic reduction in both ac and dc sides. The 12-pulse rectified output voltage is accomplished via two paralleled six-pulse ac-dc converters each of them consisting of three-phase diode bridge rectifier. An autotransformer is designed to supply the rectifiers. The design procedure of magnetics is in a way such that makes it suitable for retrofit applications where a six-pulse diode bridge rectifier is being utilized. Independent operation of paralleled diode-bridge rectifiers, i.e. dc-ripple re-injection methodology, requires a Zero Sequence Blocking Transformer (ZSBT). Finally, a tapped interphase reactor is connected at the output of ZSBT to double the pulse numbers of output voltage up to 24 pulses. The aforementioned structure improves power quality criteria at ac mains and makes them consistent with the IEEE-519 standard requirements for varying loads. Furthermore, near unity power factor is obtained for a wide range of DTCIMD operation. A comparison is made between 6- pulse, 12-pulse, and proposed converters from view point of power quality indices. Results show that input current total harmonic distortion (THD) is less than 5% for the proposed topology at various loads.

Sensorless Sliding Power Control of Doubly Fed Induction Wind Generator Based on MRAS Observer

In this paper present a sensorless maximum wind power extraction for variable speed constant frequency (VSCF) wind power generation systems with a doubly-fed induction generators (DFIG), to ensure stability and to impose the ideal feedback control solution despite of model uncertainties , using the principles of an active and reactive power controller (DPC) a robust sliding mode power control has been proposed to guarantees fast response times and precise control actions for control the active and reactive power independently. The simulation results in MATLAB/Simulink platform confirmed the good dynamic performance of power control approach for DFIGbased variable speed wind turbines.

Feasibility of the Evolutionary Algorithm using Different Behaviours of the Mutation Rate to Design Simple Digital Logic Circuits

The evolutionary design of electronic circuits, or evolvable hardware, is a discipline that allows the user to automatically obtain the desired circuit design. The circuit configuration is under the control of evolutionary algorithms. Several researchers have used evolvable hardware to design electrical circuits. Every time that one particular algorithm is selected to carry out the evolution, it is necessary that all its parameters, such as mutation rate, population size, selection mechanisms etc. are tuned in order to achieve the best results during the evolution process. This paper investigates the abilities of evolution strategy to evolve digital logic circuits based on programmable logic array structures when different mutation rates are used. Several mutation rates (fixed and variable) are analyzed and compared with each other to outline the most appropriate choice to be used during the evolution of combinational logic circuits. The experimental results outlined in this paper are important as they could be used by every researcher who might need to use the evolutionary algorithm to design digital logic circuits.

Time-Derivative Estimation of Noisy Movie Data using Adaptive Control Theory

This paper presents an adaptive differentiator of sequential data based on the adaptive control theory. The algorithm is applied to detect moving objects by estimating a temporal gradient of sequential data at a specified pixel. We adopt two nonlinear intensity functions to reduce the influence of noises. The derivatives of the nonlinear intensity functions are estimated by an adaptive observer with σ-modification update law.

Impact of Height of Silicon Pillar on Vertical DG-MOSFET Device

Vertical Double Gate (DG) Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is believed to suppress various short channel effect problems. The gate to channel coupling in vertical DG-MOSFET are doubled, thus resulting in higher current density. By having two gates, both gates are able to control the channel from both sides and possess better electrostatic control over the channel. In order to ensure that the transistor possess a superb turn-off characteristic, the subs-threshold swing (SS) must be kept at minimum value (60-90mV/dec). By utilizing SILVACO TCAD software, an n-channel vertical DG-MOSFET was successfully designed while keeping the sub-threshold swing (SS) value as minimum as possible. From the observation made, the value of sub-threshold swing (SS) was able to be varied by adjusting the height of the silicon pillar. The minimum value of sub-threshold swing (SS) was found to be 64.7mV/dec with threshold voltage (VTH) of 0.895V. The ideal height of the vertical DG-MOSFET pillar was found to be at 0.265 µm.

Active Power Filtering Implementation Using Photovoltaic System with Reduced Energy Storage Capacitor

A novel three-phase active power filter (APF) circuit with photovoltaic (PV) system to improve the quality of service and to reduce the capacity of energy storage capacitor is presented. The energy balance concept and sampling technique were used to simplify the calculation algorithm for the required utility source current and to control the voltage of the energy storage capacitor. The feasibility was verified by using the Pspice simulations and experiments. When the APF mode was used during non-operational period, not only the utilization rate, power factor and power quality could be improved, but also the capacity of energy storage capacitor could sparing. As the results, the advantages of the APF circuit are simplicity of control circuits, low cost, and good transient response.

Building an Inferential Model between Caregivers and Patients by using RFID

Nosocomial (i.e., hospital-acquired) infections (NI) is a major cause of morbidity and mortality in hospitals. NI rate is higher in intensive care units (ICU) than in the general ward due to patients with severe symptoms, poor immunity, and accepted many invasive therapies. Contact behaviors between health caregivers and patients is one of the infect factors. It is difficult to obtain complete contact records by traditional method of retrospective analysis of medical records. This paper establishes a contact history inferential model (CHIM) intended to extend the use of Proximity Sensing of rapid frequency identification (RFID) technology to transferring all proximity events between health caregivers and patients into clinical events (close-in events, contact events and invasive events).The results of the study indicated that the CHIM can infer proximity care activities into close-in events and contact events. The infection control team could redesign and build optimal workflow in the ICU according to the patient-specific contact history which provided by our automatic tracing system.

Introducing an Image Processing Base Idea for Outdoor Children Caring

In this paper application of artificial intelligence for baby and children caring is studied. Then a new idea for injury prevention and safety announcement is presented by using digital image processing. The paper presents the structure of the proposed system. The system determines the possibility of the dangers for children and babies in yards, gardens and swimming pools or etc. In the presented idea, multi camera System is used and receiver videos are processed to find the hazardous areas then the entrance of children and babies in the determined hazardous areas are analyzed. In this condition the system does the programmed action capture, produce alarm or tone or send message.

Speed Sensorless Direct Torque Control of a PMSM Drive using Space Vector Modulation Based MRAS and Stator Resistance Estimator

This paper presents a speed sensorless direct torque control scheme using space vector modulation (DTC-SVM) for permanent magnet synchronous motor (PMSM) drive based a Model Reference Adaptive System (MRAS) algorithm and stator resistance estimator. The MRAS is utilized to estimate speed and stator resistance and compensate the effects of parameter variation on stator resistance, which makes flux and torque estimation more accurate and insensitive to parameter variation. In other hand the use of SVM method reduces the torque ripple while achieving a good dynamic response. Simulation results are presented and show the effectiveness of the proposed method.

Staling and Quality of Iranian Flat Bread Stored at Modified Atmosphere in Different Packaging

This study investigated the use of modified atmosphere packaging (MAP) and different packaging to extend the shelf life of Barbari flat bread. Three atmospheres including 70%CO2 and 30%N2, 50% CO2 and 50%N2 and a normal air as control were used. The bread samples were packaged in three type pouches. The shelf life was determined by appearance of mold and yeast (M +Y) in Barbari bread samples stored at 25 ± 1°C and 38 ± 2% relative humidity. The results showed that it is possible to prolong the shelf life of Barbari bread from four days to about 21 days by using modified atmosphere packaging with high carbon dioxide concentration and high-barrier laminated and vacuum bags packages. However, the hardness of samples kept in MAP increase significantly by increase of carbon dioxide concentration. The correlation coefficient (r) between headspace CO2 concentration and hardness was 0.997, 0.997 and 0.599 for A, B and C packaging respectively. High negative correlation coefficients were found between the crumb moisture and the hardness values in various packaging. There were significant negative correlation coefficients between sensory parameters and hardness of texture.

Synchronization of Non-Identical Chaotic Systems with Different Orders Based On Vector Norms Approach

A new strategy of control is formulated for chaos synchronization of non-identical chaotic systems with different orders using the Borne and Gentina practical criterion associated with the Benrejeb canonical arrow form matrix, to drift the stability property of dynamic complex systems. The designed controller ensures that the state variables of controlled chaotic slave systems globally synchronize with the state variables of the master systems, respectively. Numerical simulations are performed to illustrate the efficiency of the proposed method.

Visualization of Sediment Thickness Variation for Sea Bed Logging using Spline Interpolation

This paper discusses on the use of Spline Interpolation and Mean Square Error (MSE) as tools to process data acquired from the developed simulator that shall replicate sea bed logging environment. Sea bed logging (SBL) is a new technique that uses marine controlled source electromagnetic (CSEM) sounding technique and is proven to be very successful in detecting and characterizing hydrocarbon reservoirs in deep water area by using resistivity contrasts. It uses very low frequency of 0.1Hz to 10 Hz to obtain greater wavelength. In this work the in house built simulator was used and was provided with predefined parameters and the transmitted frequency was varied for sediment thickness of 1000m to 4000m for environment with and without hydrocarbon. From series of simulations, synthetics data were generated. These data were interpolated using Spline interpolation technique (degree of three) and mean square error (MSE) were calculated between original data and interpolated data. Comparisons were made by studying the trends and relationship between frequency and sediment thickness based on the MSE calculated. It was found that the MSE was on increasing trends in the set up that has the presence of hydrocarbon in the setting than the one without. The MSE was also on decreasing trends as sediment thickness was increased and with higher transmitted frequency.

Real-Time Specific Weed Recognition System Using Histogram Analysis

Information on weed distribution within the field is necessary to implement spatially variable herbicide application. Since hand labor is costly, an automated weed control system could be feasible. This paper deals with the development of an algorithm for real time specific weed recognition system based on Histogram Analysis of an image that is used for the weed classification. This algorithm is specifically developed to classify images into broad and narrow class for real-time selective herbicide application. The developed system has been tested on weeds in the lab, which have shown that the system to be very effectiveness in weed identification. Further the results show a very reliable performance on images of weeds taken under varying field conditions. The analysis of the results shows over 95 percent classification accuracy over 140 sample images (broad and narrow) with 70 samples from each category of weeds.

Sensorless Speed Based on MRAS with Tuning of IP Speed Controller in FOC of Induction Motor Drive Using PSO

In this paper, a field oriented control (FOC) induction motor drive is presented. In order to eliminate the speed sensor, an adaptation algorithm for tuning the rotor speed is proposed. Based on the Model Reference Adaptive System (MRAS) scheme, the rotor speed is tuned to obtain an exact FOC induction motor drive. The reference and adjustable models, developed in stationary stator reference frame, are used in the MRAS scheme to estimate induction rotor speed from measured terminal voltages and currents. The Integral Proportional (IP) gains speed controller are tuned by a modern approach that is the Particle Swarm Optimization (PSO) algorithm in order to optimize the parameters of the IP controller. The use of PSO as an optimization algorithm makes the drive robust, with faster dynamic response, higher accuracy and insensitive to load variation. The proposed algorithm has been tested by numerical simulation, showing the capability of driving load.

Students- Perception of the Evaluation System in Architecture Studios

Architecture education was based on apprenticeship models and its nature has not changed much during long period but the Source of changes was its evaluation process and system. It is undeniable that art and architecture education is completely based on transmitting knowledge from instructor to students. In contrast to other majors this transmitting is by iteration and practice and studio masters try to control the design process and improving skills in the form of supervision and criticizing. Also the evaluation will end by giving marks to students- achievements. Therefore the importance of the evaluation and assessment role is obvious and it is not irrelevant to say that if we want to know about the architecture education system, we must first study its assessment procedures. The evolution of these changes in western countries has literate and documented well. However it seems that this procedure has unregarded in Malaysia and there is a severe lack of research and documentation in this area. Malaysia as an under developing and multicultural country which is involved different races and cultures is a proper origin for scrutinizing and understanding the evaluation systems and acceptability amount of current implemented models to keep the evaluation and assessment procedure abreast with needs of different generations, cultures and even genders. This paper attempts to answer the questions of how evaluation and assessments are performed and how students perceive this evaluation system in the context Malaysia. The main advantage of this work is that it contributes in international debate on evaluation model.

The Surface Adsorption of Nano-pore Template

This paper aims to fabricated high quality anodic aluminum oxide (AAO) film by anodization method. AAO pore size, pore density, and film thickness can be controlled in 10~500 nm, 108~1011 pore.cm-2, and 1~100 μm. AAO volume and surface area can be computed based on structural parameters such as thickness, pore size, pore density, and sample size. Base on the thetorical calculation, AAO has 100 μm thickness with 15 nm, 60 nm, and 500 nm pore diameters AAO surface areas are 1225.2 cm2, 3204.4 cm2, and 549.7 cm2, respectively. The large unit surface area which is useful for adsorption application. When AAO adsorbed pH indictor of bromphenol blue presented a sensitive pH detection of solution change. This testing method can further be used for the precise measurement of biotechnology, convenience measurement of industrial engineering.

Identification of States and Events for the Static and Dynamic Simulation of Single Electron Tunneling Circuits

The implementation of single-electron tunneling (SET) simulators based on the master-equation (ME) formalism requires the efficient and accurate identification of an exhaustive list of active states and related tunnel events. Dynamic simulations also require the control of the emerging states and guarantee the safe elimination of decaying states. This paper describes algorithms for use in the stationary and dynamic control of the lists of active states and events. The paper presents results obtained using these algorithms with different SET structures.

Neurogenic Potential of Clitoria ternatea Aqueous Root Extract–A Basis for Enhancing Learning and Memory

The neurogenic potential of many herbal extracts used in Indian medicine is hitherto unknown. Extracts derived from Clitoria ternatea Linn have been used in Indian Ayurvedic system of medicine as an ingredient of “Medhya rasayana", consumed for improving memory and longevity in humans and also in treatment of various neurological disorders. Our earlier experimental studies with oral intubation of Clitoria ternatea aqueous root extract (CTR) had shown significant enhancement of learning and memory in postnatal and young adult Wistar rats. The present study was designed to elucidate the in vitro effects of 200ng/ml of CTR on proliferation, differentiation and growth of anterior subventricular zone neural stem cells (aSVZ NSC-s) derived from prenatal and postnatal rat pups. Results show significant increase in proliferation and growth of neurospheres and increase in the yield of differentiated neurons of aSVZ neural precursor cells (aSVZNPC-s) at 7 days in vitro when treated with 200ng/ml of CTR as compared to age matched control. Results indicate that CTR has growth promoting neurogenic effect on aSVZ neural stem cells and their survival similar to neurotrophic factors like Survivin, Neuregulin 1, FGF-2, BDNF possibly the basis for enhanced learning and memory.

Post Colonial Socio-Cultural Reflections in Telugu Literature

The Post colonial society in India has witnessed the turmoil to come out from the widespread control and influence of colonialism. The socio-cultural life of a society with all its dynamics is reflected in realistic forms of literature. The social events and human experience are drawn into a new creative form and are given to the reader as a new understanding and perspective of life. It enables the reader to understand the essence of life and motivates him to prepare for a positive change. After India becoming free from the colonial rule in 1947, systematic efforts were made by central and state governments and institutions to limit the role of English and simultaneously enlarge the function of Indian languages by planning in a strategic manner. The eighteen languages recognized as national languages are having very rich literatures. Telugu language is one among the Dravidian language family and is widely spoken by a majority of people. The post colonial socio-cultural factors were very well reflected in Telugu literature. The anti-colonial, reform oriented, progressive, post modernistic trends in Telugu literature are nothing but creative reflections of the post colonial society. This paper examines the major socio-cultural reflections in Telugu literature of the post colonial period.

Expert System for Sintering Process Control based on the Information about solid-fuel Flow Composition

Usually, the solid-fuel flow of an iron ore sinter plant consists of different types of the solid-fuels, which differ from each other. Information about the composition of the solid-fuel flow usually comes every 8-24 hours. It can be clearly seen that this information cannot be used to control the sintering process in real time. Due to this, we propose an expert system which uses indirect measurements from the process in order to obtain the composition of the solid-fuel flow by solving an optimization task. Then this information can be used to control the sintering process. The proposed technique can be successfully used to improve sinter quality and reduce the amount of solid-fuel used by the process.