Comprehensive Hierarchy Evaluation of Power Quality Based on an Incentive Mechanism

In a liberalized electricity market, it is not surprising that different customers require different power quality (PQ) levels at different price. Power quality related to several power disturbances is described by many parameters, so how to define a comprehensive hierarchy evaluation system of power quality (PQCHES) has become a concerned issue. In this paper, based on four electromagnetic compatibility (EMC) levels, the numerical range of each power disturbance is divided into five grades (Grade I –Grade V), and the “barrel principle" of power quality is used for the assessment of overall PQ performance with only one grade indicator. A case study based on actual monitored data of PQ shows that the site PQ grade indicates the electromagnetic environment level and also expresses the characteristics of loads served by the site. The shortest plank principle of PQ barrel is an incentive mechanism, which can combine with the rewards/penalty mechanism (RPM) of consumed energy “on quality demand", to stimulate utilities to improve the overall PQ level and also stimulate end-user more “smart" under the infrastructure of future SmartGrid..

Sense of Territoriality and Revitalization of Neighborhood Centers in Boshrooyeh City

The role of neighborhood center as semi public (the balance space) is disappeared in bonding between private and public in new urbanism. In this way, a hierarchical principle in the traditional neighborhood center appears to create or develop the conditions for residents` relationships and belonging. This paper evaluates significant of hierarchical principles of the neighborhood center in residents` territoriality and its factors. In this way Miandeh neighborhood center from Boshrooyeh city was determined as a case study area. Results indicated that a hierarchical principle is the best instrument to improve the territoriality as the subcomponent of place belonging in residents. The findings help the urban designer to revitalization the neighborhoods and proceedings in organization of physical space.

Development of Mechanical Properties of Self Compacting Concrete Contain Rice Husk Ash

Self-compacting concrete (SCC), a new kind of high performance concrete (HPC) have been first developed in Japan in 1986. The development of SCC has made casting of dense reinforcement and mass concrete convenient, has minimized noise. Fresh self-compacting concrete (SCC) flows into formwork and around obstructions under its own weight to fill it completely and self-compact (without any need for vibration), without any segregation and blocking. The elimination of the need for compaction leads to better quality concrete and substantial improvement of working conditions. SCC mixes generally have a much higher content of fine fillers, including cement, and produce excessively high compressive strength concrete, which restricts its field of application to special concrete only. To use SCC mixes in general concrete construction practice, requires low cost materials to make inexpensive concrete. Rice husk ash (RHA) has been used as a highly reactive pozzolanic material to improve the microstructure of the interfacial transition zone (ITZ) between the cement paste and the aggregate in self compacting concrete. Mechanical experiments of RHA blended Portland cement concretes revealed that in addition to the pozzolanic reactivity of RHA (chemical aspect), the particle grading (physical aspect) of cement and RHA mixtures also exerted significant influences on the blending efficiency. The scope of this research was to determine the usefulness of Rice husk ash (RHA) in the development of economical self compacting concrete (SCC). The cost of materials will be decreased by reducing the cement content by using waste material like rice husk ash instead of. This paper presents a study on the development of Mechanical properties up to 180 days of self compacting and ordinary concretes with rice-husk ash (RHA), from a rice paddy milling industry in Rasht (Iran). Two different replacement percentages of cement by RHA, 10%, and 20%, and two different water/cementicious material ratios (0.40 and 0.35), were used for both of self compacting and normal concrete specimens. The results are compared with those of the self compacting concrete without RHA, with compressive, flexural strength and modulus of elasticity. It is concluded that RHA provides a positive effect on the Mechanical properties at age after 60 days. Base of the result self compacting concrete specimens have higher value than normal concrete specimens in all test except modulus of elasticity. Also specimens with 20% replacement of cement by RHA have the best performance.

Thailand Throne Hall Architecture in the Grand Palace in the Early Days of Ratthanakosin Era

Amarindra-vinitchai-mahaisuraya Bhiman throne hall is one of the most significant throne halls in the grand palace in the Ratthanakosin city situated in Bangkok, Thailand. This is the first group of throne halls built in order to serve as a place for meetings, performing state affairs and royal duties until the present time. The structure and pattern of architectural design including the decoration and interior design of the throne hall obviously exhibits and convey the status of the king under the context of Thai society in the early period of Ratthanakosin era. According to the tradition of ruling the kingdom in absolute monarchy which had been in place since Ayutthaya era (A.D.1350-1767), the king was deemed as Deva Raja, the highest power and authority over the kingdom and as the greatest emperor of the universe (Chakkravatin). The architectural design adopted the concept of “Prasada" or Viman which served as the dwelling place of the gods and was presented in the form of “Thai traditional architecture" For the interior design of the throne hall, it had been adopted to be the heaven and the centre of the Universe in line with the cosmological beliefs of ancient people described in scripture Tribhumikatha (Tri Bhumi) written by Phra Maha Thamma Raja (Phraya Lithai) of the Sukhothai era (A.D.1347-1368). According to this belief, the throne hall had been designed to represent mount Meru, the central of the universe. On the top end of Mount Meru is situated the Viman and dwelling place of Indra who is the king of gods according to the idea of Deva Raja (the king god Avatar). At the same time, Indra also existed as the king of the universe simultaneously.

The Influence of Socio-Economic Backgrounds towards Satisfaction with Student Housing Facilities

Studies on residential satisfaction have been actively discussed under family house setting. However, limited studies have been conducted on student residential satisfaction. This study is an attempt to fill the research gap. It focuses on the influence of socioeconomic on students- satisfaction with the universities- student housing facilities. The students who stayed at the on-campus student housing were the respondents. This study employed two-stage cluster sampling method in classifying the respondents. Self-administered questionnaires were distributed face-to-face to the students. In general, it is confirmed that students- socio-economic backgrounds have influence on the students- satisfaction with their housing facilities. The main influential factors were the students- economic status, sense of sharing, and ethnicity of their roommates. Furthermore, this study could also provide a useful feedback for the universities in order to improve their student housing facilities.

Restructuring Kuwait Electric Power System: Mandatory or Optional?

Kuwait-s electric power system is vertically integrated organization owned and operated by the government. For more than five decades, the government of Kuwait has provided relatively reliable electric services to consumers with subsidized electric service fees. Given the country-s rapid socio-economical development and consequently the increase of electricity demand, a question that inflicts itself: Is it necessary to reform the power system to face the fast growing demand? This paper recommends that the government should consider the private sector as a partner in operating the power system. Therefore, power system restructuring is needed to allow such partnership. There are challenges that prevent such restructuring. Abstract recommendations toward resolving these challenges are proposed.

New Multi-Solid Thermodynamic Model for the Prediction of Wax Formation

In the previous multi-solid models,¤ò approach is used for the calculation of fugacity in the liquid phase. For the first time, in the proposed multi-solid thermodynamic model,γ approach has been used for calculation of fugacity in the liquid mixture. Therefore, some activity coefficient models have been studied that the results show that the predictive Wilson model is more appropriate than others. The results demonstrate γ approach using the predictive Wilson model is in more agreement with experimental data than the previous multi-solid models. Also, by this method, generates a new approach for presenting stability analysis in phase equilibrium calculations. Meanwhile, the run time in γ approach is less than the previous methods used ¤ò approach. The results of the new model present 0.75 AAD % (Average Absolute Deviation) from the experimental data which is less than the results error of the previous multi-solid models obviously.

3D Locomotion and Fractal Analysis of Goldfish for Acute Toxicity Bioassay

Biological reactions of individuals of a testing animal to toxic substance are unique and can be used as an indication of the existing of toxic substance. However, to distinguish such phenomenon need a very complicate system and even more complicate to analyze data in 3 dimensional. In this paper, a system to evaluate in vitro biological activities to acute toxicity of stochastic self-affine non-stationary signal of 3D goldfish swimming by using fractal analysis is introduced. Regular digital camcorders are utilized by proposed algorithm 3DCCPC to effectively capture and construct 3D movements of the fish. A Critical Exponent Method (CEM) has been adopted as a fractal estimator. The hypothesis was that the swimming of goldfish to acute toxic would show the fractal property which related to the toxic concentration. The experimental results supported the hypothesis by showing that the swimming of goldfish under the different toxic concentration has fractal properties. It also shows that the fractal dimension of the swimming related to the pH value of FD Ôëê 0.26pH + 0.05. With the proposed system, the fish is allowed to swim freely in all direction to react to the toxic. In addition, the trajectories are precisely evaluated by fractal analysis with critical exponent method and hence the results exhibit with much higher degree of confidence.

The Euler Equations of Steady Flow in Terms of New Dependent and Independent Variables

In this paper we study the transformation of Euler equations  1 , u u u Pf t (ρ ∂) + ⋅∇ = − ∇ + ∂ G G G G ∇⋅ = u 0, G where (ux, t) G G is the velocity of a fluid, P(x, t) G is the pressure of a fluid andρ (x, t) G is density. First of all, we rewrite the Euler equations in terms of new unknown functions. Then, we introduce new independent variables and transform it to a new curvilinear coordinate system. We obtain the Euler equations in the new dependent and independent variables. The governing equations into two subsystems, one is hyperbolic and another is elliptic.

Unsteady Reversed Stagnation-Point Flow over a Flat Plate

This paper investigates the nature of the development of two-dimensional laminar flow of an incompressible fluid at the reversed stagnation-point. ". In this study, we revisit the problem of reversed stagnation-point flow over a flat plate. Proudman and Johnson (1962) first studied the flow and obtained an asymptotic solution by neglecting the viscous terms. This is no true in neglecting the viscous terms within the total flow field. In particular it is pointed out that for a plate impulsively accelerated from rest to a constant velocity V0 that a similarity solution to the self-similar ODE is obtained which is noteworthy completely analytical.

Modeling of Cross Flow Classifier with Water Injection

In hydrocyclones, the particle separation efficiency is limited by the suspended fine particles, which are discharged with the coarse product in the underflow. It is well known that injecting water in the conical part of the cyclone reduces the fine particle fraction in the underflow. This paper presents a mathematical model that simulates the water injection in the conical component. The model accounts for the fluid flow and the particle motion. Particle interaction, due to hindered settling caused by increased density and viscosity of the suspension, and fine particle entrainment by settling coarse particles are included in the model. Water injection in the conical part of the hydrocyclone is performed to reduce fine particle discharge in the underflow. The model demonstrates the impact of the injection rate, injection velocity, and injection location on the shape of the partition curve. The simulations are compared with experimental data of a 50-mm cyclone.

Investigation of Corona wind Effect on Heat and Mass Transfer Enhancement

Applying corona wind as a novel technique can lead to a great level of heat and mass transfer augmentation by using very small amount of energy. Enhancement of forced flow evaporation rate by applying electric field (corona wind) has been experimentally evaluated in this study. Corona wind produced by a fine wire electrode which is charged with positive high DC voltage impinges to water surface and leads to evaporation enhancement by disturbing the saturated air layer over water surface. The study was focused on the effect of corona wind velocity, electrode spacing and air flow velocity on the level of evaporation enhancement. Two sets of experiments, i.e. with and without electric field, have been conducted. Data obtained from the first experiment were used as reference for evaluation of evaporation enhancement at the presence of electric field. Applied voltages ranged from corona threshold voltage to spark over voltage at 1 kV increments. The results showed that corona wind has great enhancement effect on water evaporation rate, but its effectiveness gradually diminishes by increasing air flow velocity. Maximum enhancements were 7.3 and 3.6 for air velocities of 0.125 and 1.75 m/s, respectively.

Development of 3D Coordinates and Damaged Point Detection System for Ducts using IMU

Recently, as the scale of construction projects has increases, more ground excavation for foundations is carried out than ever before. Consequently, damage to underground ducts (gas, water/sewage or oil pipelines, communication cables or power cable ducts) or superannuated pipelines frequently cause serious accidents resulting in damage to life and property. (In Korea, the total length of city water pipelines was approximately 2,000 km as of the end of 2009.) In addition, large amounts of damage caused by fractures, water and gas leakage caused by superannuation or damage to underground ducts in construction has been reported. Therefore, a system is required to precisely detect defects and deterioration in underground pipelines and the locations of such defects, for timely and accurate maintenance or replacement of the ducts. In this study, a system was developed which can locate underground structures (gas and water pipelines, power cable ducts, etc.) in 3D-coordinates and monitor the degree and position of defects using an Inertial Measurement Unit (IMU) sensing technique. The system can prevent damage to underground ducts and superannuated pipelines during construction, and provide reliable data for maintenance. The utility of the IMU sensing technique used in aircraft and ships in civil applications was verified.

Distribution Feeder Reconfiguration Considering Distributed Generators

Recently, distributed generation technologies have received much attention for the potential energy savings and reliability assurances that might be achieved as a result of their widespread adoption. Fueling the attention have been the possibilities of international agreements to reduce greenhouse gas emissions, electricity sector restructuring, high power reliability requirements for certain activities, and concern about easing transmission and distribution capacity bottlenecks and congestion. So it is necessary that impact of these kinds of generators on distribution feeder reconfiguration would be investigated. This paper presents an approach for distribution reconfiguration considering Distributed Generators (DGs). The objective function is summation of electrical power losses A Tabu search optimization is used to solve the optimal operation problem. The approach is tested on a real distribution feeder.

Velocity Filter Banks using 3-D FFT

In this paper a bank of velocity filters is devised to be used for isolating a moving object with specific velocity in a sequence of frames. The approach used is a 3-D FFT based experimental procedure without applying any theoretical concept from velocity filters. Accordingly, velocity filters are built using the spectral signature of each separate moving object. Experimentation reveals the capabilities of the constructed filter bank to separate moving objects as far as the amplitude as well as the direction of the velocity are concerned.

Molecular Dynamics and Circular Dichroism Studies on Aurein 1.2 and Retro Analog

Aurein 1.2 is a 13-residue amphipathic peptide with antibacterial and anticancer activity. Aurein1.2 and its retro analog were synthesized to study the activity of the peptides in relation to their structure. The antibacterial test result showed the retro-analog is inactive. The secondary structural analysis by CD spectra indicated that both of the peptides at TFE/Water adopt alpha-helical conformation. MD simulation was performed on aurein 1.2 and retro-analog in water and TFE in order to analyse the factors that are involved in the activity difference between retro and the native peptide. The simulation results are discussed and validated in the light of experimental data from the CD experiment. Both of the peptides showed a relatively similar pattern for their hydrophobicity, hydrophilicity, solvent accessible surfaces, and solvent accessible hydrophobic surfaces. However, they showed different in directions of dipole moment of peptides. Also, Our results further indicate that the reversion of the amino acid sequence affects flexibility .The data also showed that factors causing structural rigidity may decrease the activity. Consequently, our finding suggests that in the case of sequence-reversed peptide strategy, one has to pay attention to the role of amino acid sequence order in making flexibility and role of dipole moment direction in peptide activity. KeywordsAntimicrobial peptides, retro, molecular dynamic, circular dichroism.

Streamflow Modeling for a Small Watershed Using Limited Hydrological Data

This research was conducted in the Pua Watershed whereas located in the Upper Nan River Basin in Nan province, Thailand. Nan River basin originated in Nan province that comprises of many tributary streams to produce as inflow to the Sirikit dam provided huge reservoir with the storage capacity of 9510 million cubic meters. The common problems of most watersheds were found i.e. shortage water supply for consumption and agriculture utilizations, deteriorate of water quality, flood and landslide including debris flow, and unstable of riverbank. The Pua Watershed is one of several small river basins that flow through the Nan River Basin. The watershed includes 404 km2 representing the Pua District, the Upper Nan Basin, or the whole Nan River Basin, of 61.5%, 18.2% or 1.2% respectively. The Pua River is a main stream producing all year streamflow supplying the Pua District and an inflow to the Upper Nan Basin. Its length approximately 56.3 kilometers with an average slope of the channel by 1.9% measured. A diversion weir namely Pua weir bound the plain and mountainous areas with a very steep slope of the riverbed to 2.9% and drainage area of 149 km2 as upstream watershed while a mild slope of the riverbed to 0.2% found in a river reach of 20.3 km downstream of this weir, which considered as a gauged basin. However, the major branch streams of the Pua River are ungauged catchments namely: Nam Kwang and Nam Koon with the drainage area of 86 and 35 km2 respectively. These upstream watersheds produce runoff through the 3-streams downstream of Pua weir, Jao weir, and Kang weir, with an averaged annual runoff of 578 million cubic meters. They were analyzed using both statistical data at Pua weir and simulated data resulted from the hydrologic modeling system (HEC–HMS) which applied for the remaining ungauged basins. Since the Kwang and Koon catchments were limited with lack of hydrological data included streamflow and rainfall. Therefore, the mathematical modeling: HEC-HMS with the Snyder-s hydrograph synthesized and transposed methods were applied for those areas using calibrated hydrological parameters from the upstream of Pua weir with continuously daily recorded of streamflow and rainfall data during 2008-2011. The results showed that the simulated daily streamflow and sum up as annual runoff in 2008, 2010, and 2011 were fitted with observed annual runoff at Pua weir using the simple linear regression with the satisfied correlation R2 of 0.64, 062, and 0.59, respectively. The sensitivity of simulation results were come from difficulty using calibrated parameters i.e. lag-time, coefficient of peak flow, initial losses, uniform loss rates, and missing some daily observed data. These calibrated parameters were used to apply for the other 2-ungauged catchments and downstream catchments simulated.

Estimation of Groundwater Recovery by Recharge in the Agricultural Area

The Kumamoto area, Kyushu, Japan has 1,041km2 in area and about 1milion in population. This area is a greatest area in Japan which depends on groundwater for all of drinking water. Quantity of this local groundwater use is about 200MCM during the year. It is understood that the main recharging area of groundwater exist in the rice field zone which have high infiltrate height ahead of 100mm/ day of the irrigated water located in the middle area of the Shira-River Basin. However, by decrease of the paddy-rice planting area by urbanization and an acreage reduction policy, the groundwater income and expenditure turned worse. Then Kumamoto city and four companies expended financial support to increase recharging water to underground by ponded water in the field from 2004. In this paper, the author reported the situation of recovery of groundwater by recharge and estimates the efficiency of recharge by statistical method.

A Serializability Condition for Multi-step Transactions Accessing Ordered Data

In mobile environments, unspecified numbers of transactions arrive in continuous streams. To prove correctness of their concurrent execution a method of modelling an infinite number of transactions is needed. Standard database techniques model fixed finite schedules of transactions. Lately, techniques based on temporal logic have been proposed as suitable for modelling infinite schedules. The drawback of these techniques is that proving the basic serializability correctness condition is impractical, as encoding (the absence of) conflict cyclicity within large sets of transactions results in prohibitively large temporal logic formulae. In this paper, we show that, under certain common assumptions on the graph structure of data items accessed by the transactions, conflict cyclicity need only be checked within all possible pairs of transactions. This results in formulae of considerably reduced size in any temporal-logic-based approach to proving serializability, and scales to arbitrary numbers of transactions.

Comparison of Finite Difference Schemes for Water Flow in Unsaturated Soils

Flow movement in unsaturated soil can be expressed by a partial differential equation, named Richards equation. The objective of this study is the finding of an appropriate implicit numerical solution for head based Richards equation. Some of the well known finite difference schemes (fully implicit, Crank Nicolson and Runge-Kutta) have been utilized in this study. In addition, the effects of different approximations of moisture capacity function, convergence criteria and time stepping methods were evaluated. Two different infiltration problems were solved to investigate the performance of different schemes. These problems include of vertical water flow in a wet and very dry soils. The numerical solutions of two problems were compared using four evaluation criteria and the results of comparisons showed that fully implicit scheme is better than the other schemes. In addition, utilizing of standard chord slope method for approximation of moisture capacity function, automatic time stepping method and difference between two successive iterations as convergence criterion in the fully implicit scheme can lead to better and more reliable results for simulation of fluid movement in different unsaturated soils.