Analysis of Linked in Series Servers with Blocking, Priority Feedback Service and Threshold Policy

The use of buffer thresholds, blocking and adequate service strategies are well-known techniques for computer networks traffic congestion control. This motivates the study of series queues with blocking, feedback (service under Head of Line (HoL) priority discipline) and finite capacity buffers with thresholds. In this paper, the external traffic is modelled using the Poisson process and the service times have been modelled using the exponential distribution. We consider a three-station network with two finite buffers, for which a set of thresholds (tm1 and tm2) is defined. This computer network behaves as follows. A task, which finishes its service at station B, gets sent back to station A for re-processing with probability o. When the number of tasks in the second buffer exceeds a threshold tm2 and the number of task in the first buffer is less than tm1, the fed back task is served under HoL priority discipline. In opposite case, for fed backed tasks, “no two priority services in succession" procedure (preventing a possible overflow in the first buffer) is applied. Using an open Markovian queuing schema with blocking, priority feedback service and thresholds, a closed form cost-effective analytical solution is obtained. The model of servers linked in series is very accurate. It is derived directly from a twodimensional state graph and a set of steady-state equations, followed by calculations of main measures of effectiveness. Consequently, efficient expressions of the low computational cost are determined. Based on numerical experiments and collected results we conclude that the proposed model with blocking, feedback and thresholds can provide accurate performance estimates of linked in series networks.

Wear Mechanisms in High Speed Steel Gear Cutting Tools

In this paper, the wear of high speed steel hobs during hobbing has been studied. The wear mechanisms are strongly influenced by the choice of cutting speed. At moderate and high cutting speeds three major wear mechanisms were identified: abrasion, mild adhesive and severe adhesive. The microstructure and wear behavior of two high speed steel grades (M2 and ASP30) has been compared. In contrast, a variation in chemical composition or microstructure of HSS tool material generally did not change the dominant wear mechanism. However, the tool material properties determine the resistance against the operating wear mechanism and consequently the tool life. The metallographic analysis and wear measurement at the tip of hob teeth included scanning electron microscopy and stereoscope microscopy. Roughness profilometery is used for measuring the gear surface roughness.

Coupled Multifield Analysis of Piezoelectrically Actuated Microfluidic Device for Transdermal Drug Delivery Applications

In this paper, design, fabrication and coupled multifield analysis of hollow out-of-plane silicon microneedle array with piezoelectrically actuated microfluidic device for transdermal drug delivery (TDD) applications is presented. The fabrication process of silicon microneedle array is first done by series of combined isotropic and anisotropic etching processes using inductively coupled plasma (ICP) etching technology. Then coupled multifield analysis of MEMS based piezoelectrically actuated device with integrated 2×2 silicon microneedle array is presented. To predict the stress distribution and model fluid flow in coupled field analysis, finite element (FE) and computational fluid dynamic (CFD) analysis using ANSYS rather than analytical systems has been performed. Static analysis and transient CFD analysis were performed to predict the fluid flow through the microneedle array. The inlet pressure from 10 kPa to 150 kPa was considered for static CFD analysis. In the lumen region fluid flow rate 3.2946 μL/min is obtained at 150 V for 2×2 microneedle array. In the present study the authors have performed simulation of structural, piezoelectric and CFD analysis on three dimensional model of the piezoelectrically actuated mcirofluidic device integrated with 2×2 microneedle array.

A New Condition for Conflicting Bifuzzy Sets Based On Intuitionistic Evaluation

Fuzzy sets theory affirmed that the linguistic value for every contraries relation is complementary. It was stressed in the intuitionistic fuzzy sets (IFS) that the conditions for contraries relations, which are the fuzzy values, cannot be greater than one. However, complementary in two contradict phenomena are not always true. This paper proposes a new idea condition for conflicting bifuzzy sets by relaxing the condition of intuitionistic fuzzy sets. Here, we will critically forward examples using triangular fuzzy number in formulating a new condition for conflicting bifuzzy sets (CBFS). Evaluation of positive and negative in conflicting phenomena were calculated concurrently by relaxing the condition in IFS. The hypothetical illustration showed the applicability of the new condition in CBFS for solving non-complement contraries intuitionistic evaluation. This approach can be applied to any decision making where conflicting is very much exist.

The Key Role of the Steroidal Hormones in the Pattern Distribution of the Epiphyseal Structure in Rabbit

Steroidal hormones with the efficient changes on the epiphyseal growth plate may influence tissue structure properties. Presents paper to investigate the effects of gonadectomy in the pattern distribution of the epiphyseal structure. Fifteen adult female New Zealand white rabbits were separated into three groups. One group was intact and others groups were selected for surgical operation. From these two groups, one group carried out steroidal administration. The results obtained showed that there is no statistically difference in the mean diameter of the growth plate cells between all three groups. The maximum value of the cartilage cells were allocated to the gonadectomized group and the minimum number were observed in Hormonal induced group significantly. Growth plate height was significantly greater in gonadectomized group than in two other groups.

Effects of Temperature on Resilient Modulus of Dense Asphalt Mixtures Incorporating Steel Slag Subjected to Short Term Oven Ageing

As the resources for naturally occurring aggregates diminished at an ever increasing rate, researchers are keen to utilize recycled materials in road construction in harmony with sustainable development. Steel slag, a waste product from the steel making industry, is one of the recycled materials reported to exhibit great potential to replace naturally occurring aggregates in asphalt mixtures. This paper presents the resilient modulus properties of steel slag asphalt mixtures subjected to short term oven ageing (STOA). The resilient modulus test was carried out to evaluate the stiffness of asphalt mixtures at 10ºC, 25ºC and 40ºC. Previous studies showed that stiffness changes in asphalt mixture played an important role in inflicting pavement distress particularly cracking and rutting that are common at low and high temperatures respectively. Temperature was found to significantly influence the resilient modulus of asphalt mixes. The resilient modulus of the asphalt specimens tested decreased by more than 90% when the test temperature increased from 10°C to 40°C.

Simulation of Thermal Storage Phase Change Material in Buildings

One of the potential and effective ways of storing thermal energy in buildings is the integration of brick with phase change materials (PCMs). This paper presents a two-dimensional model for simulating and analyzing of PCM in order to minimize energy consumption in the buildings. The numerical approach has been used with the real weather data of a selected city of Iran (Tehran). Two kinds of brick integrated PCM are investigated and compared base on outdoor weather conditions and the amount of energy consumption. The results show a significant reduction in maximum entering heat flux to building about 32.8% depending on PCM quantity. The results are analyzed by various temperature contour plots. The contour plots illustrated the time dependent mechanism of entering heat flux for a brick integrated with PCM. Further analysis is developed to investigate the effect of PCM location on the inlet heat flux. The results demonstrated that to achieve maximum performance of PCM it is better to locate PCM near the outdoor.

Effect of Buoyancy Ratio on Non-Darcy Mixed Convection in a Vertical Channel: A Thermal Non-equilibrium Approach

This article presents a numerical study of the doublediffusive mixed convection in a vertical channel filled with porous medium by using non-equilibrium model. The flow is assumed fully developed, uni-directional and steady state. The controlling parameters are thermal Rayleigh number (RaT ), Darcy number (Da), Forchheimer number (F), buoyancy ratio (N), inter phase heat transfer coefficient (H), and porosity scaled thermal conductivity ratio (γ). The Brinkman-extended non-Darcy model is considered. The governing equations are solved by spectral collocation method. The main emphasize is given on flow profiles as well as heat and solute transfer rates, when two diffusive components in terms of buoyancy ratio are in favor (against) of each other and solid matrix and fluid are thermally non-equilibrium. The results show that, for aiding flow (RaT = 1000), the heat transfer rate of fluid (Nuf ) increases upto a certain value of H, beyond that decreases smoothly and converges to a constant, whereas in case of opposing flow (RaT = -1000), the result is same for N = 0 and 1. The variation of Nuf in (N, Nuf )-plane shows sinusoidal pattern for RaT = -1000. For both cases (aiding and opposing) the flow destabilize on increasing N by inviting point of inflection or flow separation on the velocity profile. Overall, the buoyancy force have significant impact on the non-Darcy mixed convection under LTNE conditions.

Mathematical Simulation of Acid Concentration Effects during Acid Nitric Leaching of Cobalt from a Mixed Cobalt-Copper Oxide

Cobalt was acid nitric leached from a mixed cobaltcopper oxide with variable acid concentration. Resulting experimental data were used to analyze effects of increase in acid concentration, based on a shrinking core model of the process. The mathematical simulation demonstrated that the time rate of the dissolution mechanism is an increasing function of acid concentration. It was also shown that the magnitude of the acid concentration effect is time dependent and the increase in acid concentration is more effective at earlier stage of the dissolution than at later stage. The remaining process parameters are comprehensively affected by acid concentration and their interaction is synergetic.

Wormhole Attack Detection in Wireless Sensor Networks

The nature of wireless ad hoc and sensor networks make them very attractive to attackers. One of the most popular and serious attacks in wireless ad hoc networks is wormhole attack and most proposed protocols to defend against this attack used positioning devices, synchronized clocks, or directional antennas. This paper analyzes the nature of wormhole attack and existing methods of defending mechanism and then proposes round trip time (RTT) and neighbor numbers based wormhole detection mechanism. The consideration of proposed mechanism is the RTT between two successive nodes and those nodes- neighbor number which is needed to compare those values of other successive nodes. The identification of wormhole attacks is based on the two faces. The first consideration is that the transmission time between two wormhole attack affected nodes is considerable higher than that between two normal neighbor nodes. The second detection mechanism is based on the fact that by introducing new links into the network, the adversary increases the number of neighbors of the nodes within its radius. This system does not require any specific hardware, has good performance and little overhead and also does not consume extra energy. The proposed system is designed in ad hoc on-demand distance vector (AODV) routing protocol and analysis and simulations of the proposed system are performed in network simulator (ns-2).

Attributions by Team Members for Team Outcomes in Finnish Working Life

This study focuses on teamwork in Finnish working life. Through a wide cross-section of teams the study examines the causes to which team members attribute the outcomes of their teams. Qualitative data was collected from 314 respondents. They wrote 616 stories to describe memorable experiences of success and failure in teamwork. The stories revealed 1930 explanations. The findings indicate that both favorable and unfavorable team outcomes are perceived as being caused by the characteristics of team members, relationships between members, team communication, team structure, team goals, team leadership, and external forces. The types represent different attribution levels in the context of organizational teamwork.

Effectiveness and Equity: New Challenges for Social Recognition in Higher Education

Today, Higher Education in a global scope is subordinated to the greater institutional controls through the policies of the Quality of Education. These include processes of over evaluation of all the academic activities: students- and professors- performance, educational logistics, managerial standards for the administration of institutions of higher education, as well as the establishment of the imaginaries of excellence and prestige as the foundations on which universities of the XXI century will focus their present and future goals and interests. But at the same time higher education systems worldwide are facing the most profound crisis of sense and meaning and attending enormous mutations in their identity. Based in a qualitative research approach, this paper shows the social configurations that the scholars at the Universities in Mexico build around the discourse of the Quality of Education, and how these policies put in risk the social recognition of these individuals.

Real-Time 3D City Generation using Shape Grammars with LOD Variations

Creating3D environments, including characters and cities, is a significantly time consuming process due to a large amount of workinvolved in designing and modelling.There have been a number of attempts to automatically generate 3D objects employing shape grammars. However it is still too early to apply the mechanism to real problems such as real-time computer games.The purpose of this research is to introduce a time efficient and cost effective method to automatically generatevarious 3D objects for real-time 3D games. This Shape grammar-based real-time City Generation (RCG) model is a conceptual model for generating 3Denvironments in real-time and can be applied to 3D gamesoranimations. The RCG system can generate even a large cityby applying fundamental principles of shape grammars to building elementsin various levels of detailin real-time.

Influence of Technology Parameters on Properties of AA6061/SiC Composites Produced By Kobo Method

The influence of extrusion parameters on surface quality and properties of AA6061+x% vol. SiC (x = 0; 2,5; 5; 7,5;10) composites was discussed in this paper. The averages size of AA6061 and SiC particles were 10.6 μm and 0.42 μm, respectively. Two series of composites (I - compacts were preheated at extrusion temperature through 0.5 h and cooled by water directly after process; II - compacts were preheated through 3 hours and were not cooled) were consolidated via powder metallurgy processing and extruded by KoBo method. High values of density for both series of composites were achieved. Better surface quality was observed for II series of composites. Moreover, for these composites lower (compared to I series) but more uniform strength properties over the cross-section of the bar were noticed. Microstructure and Young-s modulus investigations were made.

Full-genomic Network Inference for Non-model organisms: A Case Study for the Fungal Pathogen Candida albicans

Reverse engineering of full-genomic interaction networks based on compendia of expression data has been successfully applied for a number of model organisms. This study adapts these approaches for an important non-model organism: The major human fungal pathogen Candida albicans. During the infection process, the pathogen can adapt to a wide range of environmental niches and reversibly changes its growth form. Given the importance of these processes, it is important to know how they are regulated. This study presents a reverse engineering strategy able to infer fullgenomic interaction networks for C. albicans based on a linear regression, utilizing the sparseness criterion (LASSO). To overcome the limited amount of expression data and small number of known interactions, we utilize different prior-knowledge sources guiding the network inference to a knowledge driven solution. Since, no database of known interactions for C. albicans exists, we use a textmining system which utilizes full-text research papers to identify known regulatory interactions. By comparing with these known regulatory interactions, we find an optimal value for global modelling parameters weighting the influence of the sparseness criterion and the prior-knowledge. Furthermore, we show that soft integration of prior-knowledge additionally improves the performance. Finally, we compare the performance of our approach to state of the art network inference approaches.

Optimization of Heat Treatment Due to Austenising Temperature, Time and Quenching Solution in Hadfield Steels

Manganese steel (Hadfield) is one of the important alloys in industry due to its special properties. High work hardening ability with appropriate toughness and ductility are the properties that caused this alloy to be used in wear resistance parts and in high strength condition. Heat treatment is the main process through which the desired mechanical properties and microstructures are obtained in Hadfield steel. In this study various heat treatment cycles, differing in austenising temperature, time and quenching solution are applied. For this purpose, the same samples of manganese steel was heat treated in 9 different cycles, and then the mechanical properties and microstructures were investigated. Based on the results of the study, the optimum heat treatment cycle was obtained.

Identification of the Electronic City Application Obstacles in Iran

Amazing development of the information technology, communications and internet expansion as well as the requirements of the city managers to new ideas to run the city and higher participation of the citizens encourage us to complete the electronic city as soon as possible. The foundations of this electronic city are in information technology. People-s participation in metropolitan management is a crucial topic. Information technology does not impede this matter. It can ameliorate populace-s participation and better interactions between the citizens and the city managers. Citizens can proffer their ideas, beliefs and votes through digital mass media based upon the internet and computerization plexuses on the topical matters to receive appropriate replies and services. They can participate in urban projects by becoming cognizant of the city views. The most significant challenges are as follows: information and communicative management, altering citizens- views, as well as legal and office documents Electronic city obstacles have been identified in this research. The required data were forgathered through questionnaires to identify the barriers from a statistical community comprising specialists and practitioners of the ministry of information technology and communication, the municipality information technology organization. The conclusions demonstrate that the prioritized electronic city application barriers in Iran are as follows: The support quandaries (non-financial ones), behavioral, cultural and educational plights, the security, legal and license predicaments, the hardware, orismological and infrastructural curbs, the software and fiscal problems.

Smart Motion

Austenite and Martensite indicate the phases of solids undergoing phase transformation which we usually associate with materials and not with living organisms. This article provides an overview of bacterial proteins and structures that are undergoing phase transformation and suggests its probable effect on mechanical behavior. The context is mainly within the role of phase transformations occurring in the flagellum of bacteria. The current knowledge of molecular mechanism leading to phase variation in living organisms is reviewed. Since in bacteria, each flagellum is driven by a separate motor, similarity to a Differential drive in case of four-wheeled vehicles is suggested. It also suggests the application of the mechanism in which bacteria changes its direction of movement to facilitate single point turning of a multi-wheeled vehicle. Finally, examples are presented to illustrate that the motion due to phase transformation of flagella in bacteria can start a whole new research on motion mechanisms.

Time Development of Local Scour around Semi Integral Bridge Piers and Piles in Malaysia

Scouring around a bridge pier is a complex phenomenon. More laboratory experiments are required to understand the scour mechanism. This paper focused on time development of local scour around piers and piles in semi integral bridges. Laboratory data collected at Hydraulics Laboratory, University of Malaya was analyzed for this purpose. Tests were performed with two different uniform sediment sizes and five ranges of flow velocities. Fine and coarse sediments were tested in the flume. Results showed that scour depths for both pier and piles increased with time up to certain levels and after that they became almost constant. It had been found that scour depths increased when discharges increased. Coarser sediment also produced lesser scouring at the piers and combined piles.

Engine Power Effects on Support Interference

Renewed interest in propeller propulsion on aircraft configurations combined with higher propeller loads lead to the question how the effects of the propulsion on model support disturbances should be accounted for. In this paper, the determination of engine power effects on support interference of sting-mounted models is demonstrated by a measurement on a four-engine turboprop aircraft. CFD results on a more generic model are presented in order to clarify the possible mechanism behind engine power effects on support interference. The engine slipstream induces a local change in angle of sideslip at the model sting thereby influencing the sting near-field and far-field effects. Whether or not the net result of these changes in the disturbance pattern leads to a significant engine power effect depends on the configuration of the wind tunnel model and the test setup.