A Genetic Based Algorithm to Generate Random Simple Polygons Using a New Polygon Merge Algorithm

In this paper a new algorithm to generate random simple polygons from a given set of points in a two dimensional plane is designed. The proposed algorithm uses a genetic algorithm to generate polygons with few vertices. A new merge algorithm is presented which converts any two polygons into a simple polygon. This algorithm at first changes two polygons into a polygonal chain and then the polygonal chain is converted into a simple polygon. The process of converting a polygonal chain into a simple polygon is based on the removal of intersecting edges. The experiments results show that the proposed algorithm has the ability to generate a great number of different simple polygons and has better performance in comparison to celebrated algorithms such as space partitioning and steady growth.

The Effect of Particle Porosity in Mixed Matrix Membrane Permeation Models

The purpose of this paper is to examine gas transport behavior of mixed matrix membranes (MMMs) combined with porous particles. Main existing models are categorized in two main groups; two-phase (ideal contact) and three-phase (non-ideal contact). A new coefficient, J, was obtained to express equations for estimating effect of the particle porosity in two-phase and three-phase models. Modified models evaluates with existing models and experimental data using Matlab software. Comparison of gas permeability of proposed modified models with existing models in different MMMs shows a better prediction of gas permeability in MMMs.

Facebook Spam and Spam Filter Using Artificial Neural Networks

Spam is any unwanted electronic message or material in any form posted too many people. As the world is growing as global world, social networking sites play an important role in making world global providing people from different parts of the world a platform to meet and express their views. Among different social networking sites Facebook become the leading one. With increase in usage different users start abusive use of Facebook by posting or creating ways to post spam. This paper highlights the potential spam types nowadays Facebook users’ faces. This paper also provide the reason how user become victim to spam attack. A methodology is proposed in the end discusses how to handle different types of spam.

On the Network Packet Loss Tolerance of SVM Based Activity Recognition

In this study, data loss tolerance of Support Vector Machines (SVM) based activity recognition model and multi activity classification performance when data are received over a lossy wireless sensor network is examined. Initially, the classification algorithm we use is evaluated in terms of resilience to random data loss with 3D acceleration sensor data for sitting, lying, walking and standing actions. The results show that the proposed classification method can recognize these activities successfully despite high data loss. Secondly, the effect of differentiated quality of service performance on activity recognition success is measured with activity data acquired from a multi hop wireless sensor network, which introduces  high data loss. The effect of number of nodes on the reliability and multi activity classification success is demonstrated in simulation environment. To the best of our knowledge, the effect of data loss in a wireless sensor network on activity detection success rate of an SVM based classification algorithm has not been studied before.

A Further Study on the 4-Ordered Property of Some Chordal Ring Networks

Given a graph G. A cycle of G is a sequence of vertices of G such that the first and the last vertices are the same. A hamiltonian cycle of G is a cycle containing all vertices of G. The graph G is k-ordered (resp. k-ordered hamiltonian) if for any sequence of k distinct vertices of G, there exists a cycle (resp. hamiltonian cycle) in G containing these k vertices in the specified order. Obviously, any cycle in a graph is 1-ordered, 2-ordered and 3- ordered. Thus the study of any graph being k-ordered (resp. k-ordered hamiltonian) always starts with k = 4. Most studies about this topic work on graphs with no real applications. To our knowledge, the chordal ring families were the first one utilized as the underlying topology in interconnection networks and shown to be 4-ordered. Furthermore, based on our computer experimental results, it was conjectured that some of them are 4-ordered hamiltonian. In this paper, we intend to give some possible directions in proving the conjecture.

Barrier Properties of Starch - Ethylene Vinyl Alcohol Nanocomposites

Replacement of plastics used in the food industry seems to be a serious issue to overcome mainly the environmental problems in recent years. This study investigates the hydrophilicity and permeability properties of starch biopolymer which ethylene vinyl alcohol (EVOH) (0-10%) and nanocrystalline cellulose (NCC) (1-15%) were used to enhance its properties. Starch -EVOH nanocomposites were prepared by casting method in different formulations. NCC production by acid hydrolysis was confirmed by scanning electron microscopy. Solubility, water vapor permeability, water vapor transmission rate and moisture absorbance were measured on each of the nanocomposites. The results were analyzed by SAS software. The lowest moisture absorbance was measured in pure starch nanocomposite containing 8% NCC. The lowest permeability to water vapor belongs to starch nanocomposite containing 8% NCC and the sample containing 7.8% EVOH and 13% NCC. Also the lowest solubility was observed in the composite contains the highest amount of EVOH. Applied Process resulted in production of bio films which have good resistance to water vapor permeability and solubility in water. The use of NCC and EVOH leads to reduced moisture absorbance property of the biofilms.

SCR-Based Advanced ESD Protection Device for Low Voltage Application

This paper proposed a silicon controller rectifier (SCR) based ESD protection device to protect low voltage ESD for integrated circuit. The proposed ESD protection device has low trigger voltage and high holding voltage compared with conventional SCR-based ESD protection devices. The proposed ESD protection circuit is verified and compared by TCAD simulation. This paper verified effective low voltage ESD characteristics with low trigger voltage of 5.79V and high holding voltage of 3.5V through optimization depending on design variables (D1, D2, D3 and D4).

Analytical Development of a Failure Limit and Iso-Uplift Curves for Eccentrically Loaded Shallow Foundations

Examining existing experimental results for shallow rigid foundations subjected to vertical centric load (N), accompanied or not with a bending moment (M), two main non-linear mechanisms governing the cyclic response of the soil-foundation system can be distinguished: foundation uplift and soil yielding. A soil-foundation failure limit, is defined as a domain of resistance in the two dimensional (2D) load space (N, M) inside of which lie all the admissible combinations of loads; these latter correspond to a pure elastic, non-linear elastic or plastic behavior of the soil-foundation system, while the points lying on the failure limit correspond to a combination of loads leading to a failure of the soil-foundation system. In this study, the proposed resistance domain is constructed analytically based on mechanics. Original elastic limit, uplift initiation limit and iso-uplift limits are constructed inside this domain. These limits give a prediction of the mechanisms activated for each combination of loads applied to the foundation. A comparison of the proposed failure limit with experimental tests existing in the literature shows interesting results. Also, the developed uplift initiation limit and iso-uplift curves are confronted with others already proposed in the literature and widely used due to the absence of other alternatives, and remarkable differences are noted, showing evident errors in the past proposals and relevant accuracy for those given in the present work.

Enhanced Disk-Based Databases Towards Improved Hybrid In-Memory Systems

In-memory database systems are becoming popular due to the availability and affordability of sufficiently large RAM and processors in modern high-end servers with the capacity to manage large in-memory database transactions. While fast and reliable inmemory systems are still being developed to overcome cache misses, CPU/IO bottlenecks and distributed transaction costs, disk-based data stores still serve as the primary persistence. In addition, with the recent growth in multi-tenancy cloud applications and associated security concerns, many organisations consider the trade-offs and continue to require fast and reliable transaction processing of diskbased database systems as an available choice. For these organizations, the only way of increasing throughput is by improving the performance of disk-based concurrency control. This warrants a hybrid database system with the ability to selectively apply an enhanced disk-based data management within the context of inmemory systems that would help improve overall throughput. The general view is that in-memory systems substantially outperform disk-based systems. We question this assumption and examine how a modified variation of access invariance that we call enhanced memory access, (EMA) can be used to allow very high levels of concurrency in the pre-fetching of data in disk-based systems. We demonstrate how this prefetching in disk-based systems can yield close to in-memory performance, which paves the way for improved hybrid database systems. This paper proposes a novel EMA technique and presents a comparative study between disk-based EMA systems and in-memory systems running on hardware configurations of equivalent power in terms of the number of processors and their speeds. The results of the experiments conducted clearly substantiate that when used in conjunction with all concurrency control mechanisms, EMA can increase the throughput of disk-based systems to levels quite close to those achieved by in-memory system. The promising results of this work show that enhanced disk-based systems facilitate in improving hybrid data management within the broader context of in-memory systems.

Environmentally Adaptive Acoustic Echo Suppression for Barge-in Speech Recognition

In this study, we propose a novel technique for acoustic echo suppression (AES) during speech recognition under barge-in conditions. Conventional AES methods based on spectral subtraction apply fixed weights to the estimated echo path transfer function (EPTF) at the current signal segment and to the EPTF estimated until the previous time interval. However, the effects of echo path changes should be considered for eliminating the undesired echoes. We describe a new approach that adaptively updates weight parameters in response to abrupt changes in the acoustic environment due to background noises or double-talk. Furthermore, we devised a voice activity detector and an initial time-delay estimator for barge-in speech recognition in communication networks. The initial time delay is estimated using log-spectral distance measure, as well as cross-correlation coefficients. The experimental results show that the developed techniques can be successfully applied in barge-in speech recognition systems.

Stable Delta-Sigma Modulator with Signal Dependent Forward Path Gain for Industrial Applications

Higher order ΔΣ Modulator (DSM) is basically an unstable system. The approximate conditions for stability cannot be used for the design of a DSM for industrial applications where risk is involved. The existing second order, single stage, single bit, unity feedback gain , discrete DSM cannot be used for the normalized full range (-1 to +1) of an input signal since the DSM becomes unstable when the input signal is above ±0.55. The stability is also not guaranteed for input signals of amplitude less than ±0.55. In the present paper, the above mentioned second order DSM is modified with input signal dependent forward path gain. The proposed DSM is suitable for industrial applications where one needs the digital representation of the analog input signal, during each sampling period. The proposed DSM can operate almost for the full range of input signals (-0.95 to +0.95) without causing instability, assuming that the second integrator output should not exceed the circuit supply voltage, ±15 Volts.

IT Systems of the US Federal Courts, Justice, and Governance

Validity, integrity, and impacts of the IT systems of the US federal courts have been studied as part of the Human Rights Alert-NGO (HRA) submission for the 2015 Universal Periodic Review (UPR) of human rights in the United States by the Human Rights Council (HRC) of the United Nations (UN). The current report includes overview of IT system analysis, data-mining and case studies. System analysis and data-mining show: Development and implementation with no lawful authority, servers of unverified identity, invalidity in implementation of electronic signatures, authentication instruments and procedures, authorities and permissions; discrimination in access against the public and unrepresented (pro se) parties and in favor of attorneys; widespread publication of invalid judicial records and dockets, leading to their false representation and false enforcement. A series of case studies documents the impacts on individuals' human rights, on banking regulation, and on international matters. Significance is discussed in the context of various media and expert reports, which opine unprecedented corruption of the US justice system today, and which question, whether the US Constitution was in fact suspended. Similar findings were previously reported in IT systems of the State of California and the State of Israel, which were incorporated, subject to professional HRC staff review, into the UN UPR reports (2010 and 2013). Solutions are proposed, based on the principles of publicity of the law and the separation of power: Reliance on US IT and legal experts under accountability to the legislative branch, enhancing transparency, ongoing vigilance by human rights and internet activists. IT experts should assume more prominent civic duties in the safeguard of civil society in our era.

Designing Back-stepping Sliding Mode Controller for a Class of 4Y Octorotor

This paper presents a combination of both robust nonlinear controller and nonlinear controller for a class of nonlinear 4Y Octorotor UAV using Back-stepping and sliding mode controller. The robustness against internal and external disturbance and decoupling control are the merits of the proposed paper. The proposed controller decouples the Octorotor dynamical system. The controller is then applied to a 4Y Octortor UAV and its feature will be shown.

Design and Testing of Nanotechnology Based Sequential Circuits Using MX-CQCA Logic in VHDL

This paper impart the design and testing of Nanotechnology based sequential circuits using multiplexer conservative QCA (MX-CQCA) logic gates, which is easily testable using only two vectors. This method has great prospective in the design of sequential circuits based on reversible conservative logic gates and also smashes the sequential circuits implemented in traditional gates in terms of testability. Reversible circuits are similar to usual logic circuits except that they are built from reversible gates. Designs of multiplexer conservative QCA logic based two vectors testable double edge triggered (DET) sequential circuits in VHDL language are also accessible here; it will also diminish intricacy in testing side. Also other types of sequential circuits such as D, SR, JK latches are designed using this MX-CQCA logic gate. The objective behind the proposed design methodologies is to amalgamate arithmetic and logic functional units optimizing key metrics such as garbage outputs, delay, area and power. The projected MX-CQCA gate outshines other reversible gates in terms of the intricacy, delay.

Wind Power Forecast Error Simulation Model

One of the major difficulties introduced with wind power penetration is the inherent uncertainty in production originating from uncertain wind conditions. This uncertainty impacts many different aspects of power system operation, especially the balancing power requirements. For this reason, in power system development planing, it is necessary to evaluate the potential uncertainty in future wind power generation. For this purpose, simulation models are required, reproducing the performance of wind power forecasts. This paper presents a wind power forecast error simulation models which are based on the stochastic process simulation. Proposed models capture the most important statistical parameters recognized in wind power forecast error time series. Furthermore, two distinct models are presented based on data availability. First model uses wind speed measurements on potential or existing wind power plant locations, while the seconds model uses statistical distribution of wind speeds.

Simulation Based VLSI Implementation of Fast Efficient Lossless Image Compression System Using Adjusted Binary Code & Golumb Rice Code

The Simulation based VLSI Implementation of FELICS (Fast Efficient Lossless Image Compression System) Algorithm is proposed to provide the lossless image compression and is implemented in simulation oriented VLSI (Very Large Scale Integrated). To analysis the performance of Lossless image compression and to reduce the image without losing image quality and then implemented in VLSI based FELICS algorithm. In FELICS algorithm, which consists of simplified adjusted binary code for Image compression and these compression image is converted in pixel and then implemented in VLSI domain. This parameter is used to achieve high processing speed and minimize the area and power. The simplified adjusted binary code reduces the number of arithmetic operation and achieved high processing speed. The color difference preprocessing is also proposed to improve coding efficiency with simple arithmetic operation. Although VLSI based FELICS Algorithm provides effective solution for hardware architecture design for regular pipelining data flow parallelism with four stages. With two level parallelisms, consecutive pixels can be classified into even and odd samples and the individual hardware engine is dedicated for each one. This method can be further enhanced by multilevel parallelisms.

Computer Assisted Learning in a Less Resource Region

Passing the entrance exam to a university is a major step in one's life. University entrance exam commonly known as Kankor is the nationwide entrance exam in Afghanistan. This examination is prerequisite for all public and private higher education institutions at undergraduate level. It is usually taken by students who are graduated from high schools. In this paper, we reflect the major educational school graduates issues and propose ICT-based test preparation environment, known as ‘Online Kankor Exam Prep System’ to give students the tools to help them pass the university entrance exam on the first try. The system is based on Intelligent Tutoring System (ITS), which introduced an essential package of educational technology for learners that features: (I) exam-focused questions and content; (ii) self-assessment environment; and (iii) test preparation strategies in order to help students to acquire the necessary skills in their carrier and keep them up-to-date with instruction.

Study on the Self-Location Estimate by the Evolutional Triangle Similarity Matching Using Artificial Bee Colony Algorithm

In previous study, technique to estimate a self-location by using a lunar image is proposed.We consider the improvement of the conventional method in consideration of FPGA implementationin this paper. Specifically, we introduce Artificial Bee Colony algorithm for reduction of search time.In addition, we use fixed point arithmetic to enable high-speed operation on FPGA.

Measurement Tools of the Maturity Model for IT Service Outsourcing in Higher Education Institutions

Nowadays, the successful implementation of ICTs is vital for almost any kind of organization. Good governance and ICT management are essential for delivering value, managing technological risks, managing resources and performance measurement. In addition, outsourcing is a strategic IT service solution which complements IT services provided internally in organizations. This paper proposes the measurement tools of a new holistic maturity model based on standards ISO/IEC 20000 and ISO/IEC 38500, and the frameworks and best practices of ITIL and COBIT, with a specific focus on IT outsourcing. These measurement tools allow independent validation and practical application in the field of higher education, using a questionnaire, metrics tables, and continuous improvement plan tables as part of the measurement process. Guidelines and standards are proposed in the model for facilitating adaptation to universities and achieving excellence in the outsourcing of IT services.

Wind Energy Status in Turkey

Since large part of electricity is generated by using fossil based resources, energy is an important agenda for countries. In this context, renewable energy sources are alternative to conventional sources due to the depletion of fossil resources, increasing awareness of climate change and global warming concerns. Solar, wind and hydropower energy are the main renewable energy sources. Among of them, since installed capacity of wind power has increased approximately eight times between 2008 - November of 2014, wind energy is a promising source for Turkey. Furthermore, signing of Kyoto Protocol can be accepted as a milestone for Turkey's energy policy. Turkish Government has announced Vision 2023 (energy targets by 2023) in 2010-2014 Strategic Plan prepared by Ministry of Energy and Natural Resources (MENR). Energy targets in this plan can be summarized as follows: Share of renewable energy sources in electricity generation is 30% of total electricity generation by 2023. Installed capacity of wind energy will be 20 GW by 2023. Other renewable energy sources such as solar, hydropower and geothermal are encouraged with new incentive mechanisms. Dependence on foreign energy is reduced for sustainability and energy security. On the other hand, since Turkey is surrounded by three coastal areas, wind energy potential is convenient for wind power application. As of November of 2014, total installed capacity of wind power plants is 3.51 GW and a lot of wind power plants are under construction with capacity 1.16 GW. Turkish government also encourages the locally manufactured equipments. In this context, one of the projects funded by private sector, universities and TUBİTAK names as MILRES is an important project aimed to promote the use wind energy in electricity generation. Within this project, wind turbine with 500 kW power has been produced and will be installed at the beginning of the 2015. After that, by using the experience obtained from the first phase of the project, a wind turbine with 2.5 MW power will be manufactured in an industrial scale.