Quality Attributes of Various Spray Dried Pulp Powder Prepared from Low Temperature Stored Calcium Salts Pretreated Guava Fruits

The effect of calcium salts on the storage stability and on the quality attributes of both fresh and processed product (guava powder) of white flesh guavas (var ‘Allahabad safeda’) was studied. The pulp behavioral studies of fully ripened guava fruits indicated that fruits pretreated with 3% and 4.5% calcium chloride had the least viscosity. The guava pulp powder using spray drying technique was developed and its storage stability and the moisture sorption studies were carried out for product quality evaluation at normal storage condition (27°C; 65%RH). Results revealed that powder obtained from 3% calcium chloride pretreated guavas was found to be at par with the powder obtained from control guavas after 90 days of normal storage. Studies on microbiological quality of guava pulp powder indicated that among the treatments powder obtained from guava fruit pretreated with 3% calcium chloride to be the most effective through restricting microbial counts of total plate count, yeast, mold, Staphylococcus and E. coli below their permissible limit. Moisture sorption studies of guava powder revealed that foil laminate 12μm PET/9 μm foil/38-40 μm is the most suitable packaging material recommended.

Survey on Jamming Wireless Networks: Attacks and Prevention Strategies

Wireless networks are built upon the open shared medium which makes easy for attackers to conduct malicious activities. Jamming is one of the most serious security threats to information economy and it must be dealt efficiently. Jammer prevents legitimate data to reach the receiver side and also it seriously degrades the network performance. The objective of this paper is to provide a general overview of jamming in wireless network. It covers relevant works, different jamming techniques, various types of jammers and typical prevention techniques. Challenges associated with comparing several anti-jamming techniques are also highlighted.

Local Mesh Co-Occurrence Pattern for Content Based Image Retrieval

This paper presents the local mesh co-occurrence patterns (LMCoP) using HSV color space for image retrieval system. HSV color space is used in this method to utilize color, intensity and brightness of images. Local mesh patterns are applied to define the local information of image and gray level co-occurrence is used to obtain the co-occurrence of LMeP pixels. Local mesh co-occurrence pattern extracts the local directional information from local mesh pattern and converts it into a well-mannered feature vector using gray level co-occurrence matrix. The proposed method is tested on three different databases called MIT VisTex, Corel, and STex. Also, this algorithm is compared with existing methods, and results in terms of precision and recall are shown in this paper.

Simulation Based VLSI Implementation of Fast Efficient Lossless Image Compression System Using Adjusted Binary Code & Golumb Rice Code

The Simulation based VLSI Implementation of FELICS (Fast Efficient Lossless Image Compression System) Algorithm is proposed to provide the lossless image compression and is implemented in simulation oriented VLSI (Very Large Scale Integrated). To analysis the performance of Lossless image compression and to reduce the image without losing image quality and then implemented in VLSI based FELICS algorithm. In FELICS algorithm, which consists of simplified adjusted binary code for Image compression and these compression image is converted in pixel and then implemented in VLSI domain. This parameter is used to achieve high processing speed and minimize the area and power. The simplified adjusted binary code reduces the number of arithmetic operation and achieved high processing speed. The color difference preprocessing is also proposed to improve coding efficiency with simple arithmetic operation. Although VLSI based FELICS Algorithm provides effective solution for hardware architecture design for regular pipelining data flow parallelism with four stages. With two level parallelisms, consecutive pixels can be classified into even and odd samples and the individual hardware engine is dedicated for each one. This method can be further enhanced by multilevel parallelisms.

Malicious Route Defending Reliable-Data Transmission Scheme for Multi Path Routing in Wireless Network

Securing the confidential data transferred via wireless network remains a challenging problem. It is paramount to ensure that data are accessible only by the legitimate users rather than by the attackers. One of the most serious threats to organization is jamming, which disrupts the communication between any two pairs of nodes. Therefore, designing an attack-defending scheme without any packet loss in data transmission is an important challenge. In this paper, Dependence based Malicious Route Defending DMRD Scheme has been proposed in multi path routing environment to prevent jamming attack. The key idea is to defend the malicious route to ensure perspicuous transmission. This scheme develops a two layered architecture and it operates in two different steps. In the first step, possible routes are captured and their agent dependence values are marked using triple agents. In the second step, the dependence values are compared by performing comparator filtering to detect malicious route as well as to identify a reliable route for secured data transmission. By simulation studies, it is observed that the proposed scheme significantly identifies malicious route by attaining lower delay time and route discovery time; it also achieves higher throughput.

Quad Tree Decomposition Based Analysis of Compressed Image Data Communication for Lossy and Lossless Using WSN

The Quad Tree Decomposition based performance analysis of compressed image data communication for lossy and lossless through wireless sensor network is presented. Images have considerably higher storage requirement than text. While transmitting a multimedia content there is chance of the packets being dropped due to noise and interference. At the receiver end the packets that carry valuable information might be damaged or lost due to noise, interference and congestion. In order to avoid the valuable information from being dropped various retransmission schemes have been proposed. In this proposed scheme QTD is used. QTD is an image segmentation method that divides the image into homogeneous areas. In this proposed scheme involves analysis of parameters such as compression ratio, peak signal to noise ratio, mean square error, bits per pixel in compressed image and analysis of difficulties during data packet communication in Wireless Sensor Networks. By considering the above, this paper is to use the QTD to improve the compression ratio as well as visual quality and the algorithm in MATLAB 7.1 and NS2 Simulator software tool.

Regular Generalized Star Star closed sets in Bitopological Spaces

The aim of this paper is to introduce the concepts of τ1τ2-regular generalized star star closed sets , τ1τ2-regular generalized star star open sets and study their basic properties in bitopological spaces.

CFD Predictions of Dense Slurry Flow in Centrifugal Pump Casings

Dense slurry flow through centrifugal pump casing has been modeled using the Eulerian-Eulerian approach with Eulerian multiphase model in FLUENT 6.1®. First order upwinding is considered for the discretization of momentum, k and ε terms. SIMPLE algorithm has been applied for dealing with pressurevelocity coupling. A mixture property based k-ε turbulence model has been used for modeling turbulence. Results are validated first against mesh independence and experiments for a particular set of operational and geometric conditions. Parametric analysis is then performed to determine the effect on important physical quantities viz. solid velocities, solid concentration and solid stresses near the wall with various operational geometric conditions of the pump.