Emissions of Euro 3-5 Passenger Cars Measured Over Different Driving Cycles

The reduction in vehicle exhaust emissions achieved in the last two decades is offset by the growth in traffic, as well as by changes in the composition of emitted pollutants. The present investigation illustrates the emissions of in-use gasoline and diesel passenger cars using the official European driving cycle and the ARTEMIS real-world driving cycle. It was observed that some of the vehicles do not comply with the corresponding regulations. Significant differences in emissions were observed between driving cycles. Not all pollutants showed a tendency to decrease from Euro 3 to Euro 5.

Methodology of the Energy Supply Disturbances Affecting Energy System

Recently global concerns for the energy security have steadily been on the increase and are expected to become a major issue over the next few decades. Energy security refers to a resilient energy system. This resilient system would be capable of withstanding threats through a combination of active, direct security measures and passive or more indirect measures such as redundancy, duplication of critical equipment, diversity in fuel, other sources of energy, and reliance on less vulnerable infrastructure. Threats and disruptions (disturbances) to one part of the energy system affect another. The paper presents methodology in theoretical background about energy system as an interconnected network and energy supply disturbances impact to the network. The proposed methodology uses a network flow approach to develop mathematical model of the energy system network as the system of nodes and arcs with energy flowing from node to node along paths in the network.

Detection of Ultrasonic Images in the Presence of a Random Number of Scatterers: A Statistical Learning Approach

Support Vector Machine (SVM) is a statistical learning tool that was initially developed by Vapnik in 1979 and later developed to a more complex concept of structural risk minimization (SRM). SVM is playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM was applied to the detection of medical ultrasound images in the presence of partially developed speckle noise. The simulation was done for single look and multi-look speckle models to give a complete overlook and insight to the new proposed model of the SVM-based detector. The structure of the SVM was derived and applied to clinical ultrasound images and its performance in terms of the mean square error (MSE) metric was calculated. We showed that the SVM-detected ultrasound images have a very low MSE and are of good quality. The quality of the processed speckled images improved for the multi-look model. Furthermore, the contrast of the SVM detected images was higher than that of the original non-noisy images, indicating that the SVM approach increased the distance between the pixel reflectivity levels (detection hypotheses) in the original images.

Novel Method for Elliptic Curve Multi-Scalar Multiplication

The major building block of most elliptic curve cryptosystems are computation of multi-scalar multiplication. This paper proposes a novel algorithm for simultaneous multi-scalar multiplication, that is by employing addition chains. The previously known methods utilizes double-and-add algorithm with binary representations. In order to accomplish our purpose, an efficient empirical method for finding addition chains for multi-exponents has been proposed.

Biosynthesis and In vitro Studies of Silver Bionanoparticles Synthesized from Aspergillusspecies and its Antimicrobial Activity against Multi Drug Resistant Clinical Isolates

Antimicrobial resistant is becoming a major factor in virtually all hospital acquired infection may soon untreatable is a serious public health problem. These concerns have led to major research effort to discover alternative strategies for the treatment of bacterial infection. Nanobiotehnology is an upcoming and fast developing field with potential application for human welfare. An important area of nanotechnology for development of reliable and environmental friendly process for synthesis of nanoscale particles through biological systems In the present studies are reported on the use of fungal strain Aspergillus species for the extracellular synthesis of bionanoparticles from 1 mM silver nitrate (AgNO3) solution. The report would be focused on the synthesis of metallic bionanoparticles of silver using a reduction of aqueous Ag+ ion with the culture supernatants of Microorganisms. The bio-reduction of the Ag+ ions in the solution would be monitored in the aqueous component and the spectrum of the solution would measure through UV-visible spectrophotometer The bionanoscale particles were further characterized by Atomic Force Microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR) and Thin layer chromatography. The synthesized bionanoscale particle showed a maximum absorption at 385 nm in the visible region. Atomic Force Microscopy investigation of silver bionanoparticles identified that they ranged in the size of 250 nm - 680 nm; the work analyzed the antimicrobial efficacy of the silver bionanoparticles against various multi drug resistant clinical isolates. The present Study would be emphasizing on the applicability to synthesize the metallic nanostructures and to understand the biochemical and molecular mechanism of nanoparticles formation by the cell filtrate in order to achieve better control over size and polydispersity of the nanoparticles. This would help to develop nanomedicine against various multi drug resistant human pathogens.

Profile Controlled Gold Nanostructures Fabricated by Nanosphere Lithography for Localized Surface Plasmon Resonance

Localized surface plasmon resonance (LSPR) is the coherent oscillation of conductive electrons confined in noble metallic nanoparticles excited by electromagnetic radiation, and nanosphere lithography (NSL) is one of the cost-effective methods to fabricate metal nanostructures for LSPR. NSL can be categorized into two major groups: dispersed NSL and closely pack NSL. In recent years, gold nanocrescents and gold nanoholes with vertical sidewalls fabricated by dispersed NSL, and silver nanotriangles and gold nanocaps on silica nanospheres fabricated by closely pack NSL, have been reported for LSPR biosensing. This paper introduces several novel gold nanostructures fabricated by NSL in LSPR applications, including 3D nanostructures obtained by evaporating gold obliquely on dispersed nanospheres, nanoholes with slant sidewalls, and patchy nanoparticles on closely packed nanospheres, all of which render satisfactory sensitivity for LSPR sensing. Since the LSPR spectrum is very sensitive to the shape of the metal nanostructures, formulas are derived and software is developed for calculating the profiles of the obtainable metal nanostructures by NSL, for different nanosphere masks with different fabrication conditions. The simulated profiles coincide well with the profiles of the fabricated gold nanostructures observed under scanning electron microscope (SEM) and atomic force microscope (AFM), which proves that the software is a useful tool for the process design of different LSPR nanostructures.

Chua’s Circuit Regulation Using a Nonlinear Adaptive Feedback Technique

Chua’s circuit is one of the most important electronic devices that are used for Chaos and Bifurcation studies. A central role of secure communication is devoted to it. Since the adaptive control is used vastly in the linear systems control, here we introduce a new trend of application of adaptive method in the chaos controlling field. In this paper, we try to derive a new adaptive control scheme for Chua’s circuit controlling because control of chaos is often very important in practical operations. The novelty of this approach is for sake of its robustness against the external perturbations which is simulated as an additive noise in all measured states and can be generalized to other chaotic systems. Our approach is based on Lyapunov analysis and the adaptation law is considered for the feedback gain. Because of this, we have named it NAFT (Nonlinear Adaptive Feedback Technique). At last, simulations show the capability of the presented technique for Chua’s circuit.

Palladium-Catalyzed Hydrodechlorination for Water Remediation: Catalyst Deactivation and Regeneration

Palladium-catalyzed hydrodechlorination is a promising alternative for the treatment of environmentally relevant water bodies, such as groundwater, contaminated with chlorinated organic compounds (COCs). In the aqueous phase hydrodechlorination of COCs, Pd-based catalysts were found to have a very high catalytic activity. However, the full utilization of the catalyst-s potential is impeded by the sensitivity of the catalyst to poisoning and deactivation induced by reduced sulfur compounds (e.g. sulfides). Several regenerants have been tested before to recover the performance of sulfide-fouled Pd catalyst. But these only delivered partial success with respect to re-establishment of the catalyst activity. In this study, the deactivation behaviour of Pd/Al2O3 in the presence of sulfide was investigated. Subsequent to total deactivation the catalyst was regenerated in the aqueous phase using potassium permanganate. Under neutral pH condition, oxidative regeneration with permanganate delivered a slow recovery of catalyst activity. However, changing the pH of the bulk solution to acidic resulted in the complete recovery of catalyst activity within a regeneration time of about half an hour. These findings suggest the superiority of permanganate as regenerant in re-activating Pd/Al2O3 by oxidizing Pd-bound sulfide.

Pulsed Multi-Layered Image Filtering: A VLSI Implementation

Image convolution similar to the receptive fields found in mammalian visual pathways has long been used in conventional image processing in the form of Gabor masks. However, no VLSI implementation of parallel, multi-layered pulsed processing has been brought forward which would emulate this property. We present a technical realization of such a pulsed image processing scheme. The discussed IC also serves as a general testbed for VLSI-based pulsed information processing, which is of interest especially with regard to the robustness of representing an analog signal in the phase or duration of a pulsed, quasi-digital signal, as well as the possibility of direct digital manipulation of such an analog signal. The network connectivity and processing properties are reconfigurable so as to allow adaptation to various processing tasks.

A Fitted Random Sampling Scheme for Load Distribution in Grid Networks

Grid networks provide the ability to perform higher throughput computing by taking advantage of many networked computer-s resources to solve large-scale computation problems. As the popularity of the Grid networks has increased, there is a need to efficiently distribute the load among the resources accessible on the network. In this paper, we present a stochastic network system that gives a distributed load-balancing scheme by generating almost regular networks. This network system is self-organized and depends only on local information for load distribution and resource discovery. The in-degree of each node is refers to its free resources, and job assignment and resource discovery processes required for load balancing is accomplished by using fitted random sampling. Simulation results show that the generated network system provides an effective, scalable, and reliable load-balancing scheme for the distributed resources accessible on Grid networks.

Application of Artificial Neural Network for Predicting Maintainability Using Object-Oriented Metrics

Importance of software quality is increasing leading to development of new sophisticated techniques, which can be used in constructing models for predicting quality attributes. One such technique is Artificial Neural Network (ANN). This paper examined the application of ANN for software quality prediction using Object- Oriented (OO) metrics. Quality estimation includes estimating maintainability of software. The dependent variable in our study was maintenance effort. The independent variables were principal components of eight OO metrics. The results showed that the Mean Absolute Relative Error (MARE) was 0.265 of ANN model. Thus we found that ANN method was useful in constructing software quality model.

Comparison of Frequency Converter Outages: A Case Study on the Swedish TPS System

The purpose of this paper isunavailability of the two main types of conveSwedish traction power supply (TPS) system, i.e.static converter. The number of outages and the ouused to analyze and compare the unavailability oconverters. The mean cumulative function (MCF)analyze the number of outages and the unavailabthe forced outage rate (FOR) concept has been uoutage rates. The study shows that the outagesfailure occur at a constant rate by calendar timconverter stations, while very few stations havedecreasing rate. It has also been found that the stata higher number of outages and a higher outage ratcompared to the rotary converter types. The resultsthat combining the number of outages and the fgives a better view of the converters performasupport for the maintenance decision. In fact, usingdoes not reflect reality. Comparing these two indein identifying the areas where extra resources are maintenance planning and where improvementsoutage in the TPS system.KeywordsFrequency Converter, Forced OuCumulative Function, Traction Power Supply, ESystems.

An Approach to Solving a Permutation Problem of Frequency Domain Independent Component Analysis for Blind Source Separation of Speech Signals

Independent component analysis (ICA) in the frequency domain is used for solving the problem of blind source separation (BSS). However, this method has some problems. For example, a general ICA algorithm cannot determine the permutation of signals which is important in the frequency domain ICA. In this paper, we propose an approach to the solution for a permutation problem. The idea is to effectively combine two conventional approaches. This approach improves the signal separation performance by exploiting features of the conventional approaches. We show the simulation results using artificial data.

Automatic 3D Reconstruction of Coronary Artery Centerlines from Monoplane X-ray Angiogram Images

We present a new method for the fully automatic 3D reconstruction of the coronary artery centerlines, using two X-ray angiogram projection images from a single rotating monoplane acquisition system. During the first stage, the input images are smoothed using curve evolution techniques. Next, a simple yet efficient multiscale method, based on the information of the Hessian matrix, for the enhancement of the vascular structure is introduced. Hysteresis thresholding using different image quantiles, is used to threshold the arteries. This stage is followed by a thinning procedure to extract the centerlines. The resulting skeleton image is then pruned using morphological and pattern recognition techniques to remove non-vessel like structures. Finally, edge-based stereo correspondence is solved using a parallel evolutionary optimization method based on f symbiosis. The detected 2D centerlines combined with disparity map information allow the reconstruction of the 3D vessel centerlines. The proposed method has been evaluated on patient data sets for evaluation purposes.

Influence of Injection Timing and Injector Opening Pressure on Combustion Performance and P-θ Characteristics of a CI Engine Operating on Jatropha B20 Fuel

The quest for alternatefuels for a CI engine has become all the more imperative considering its importance in the economy of a nation and from the standpoint of preserving the environment. Reported in this paper are the combustion performance and P-θ characteristics of a CI engine operating on B20 biodiesel fuel derived from Jatropha oil.Itis observed that the twin effect of advancing the injection timing and increasing the injector opening pressure (IOP) up to 220 barhas resulted in minimum brake specific energy consumption and higherpeak pressure. It is also observed that the crank angle of occurrence of peak pressure progressestowards top dead center (TDC) as the timing is advanced and IOP is increased.

Ablation, Mechanical and Thermal Properties of Fiber/Phenolic Matrix Composites

In this study, an ablation, mechanical and thermal properties of a rocket motor insulation from phenolic/ fiber matrix composites forming a laminate with different fiber between fiberglass and locally available synthetic fibers. The phenolic/ fiber matrix composites was mechanics and thermal properties by means of tensile strength, ablation, TGA and DSC. The design of thermal insulation involves several factors.Determined the mechanical properties according to MIL-I-24768: Density >1.3 g/cm3, Tensile strength >103 MPa and Ablation

Dynamic Adaptability Using Reflexivity for Mobile Agent Protection

The paradigm of mobile agent provides a promising technology for the development of distributed and open applications. However, one of the main obstacles to widespread adoption of the mobile agent paradigm seems to be security. This paper treats the security of the mobile agent against malicious host attacks. It describes generic mobile agent protection architecture. The proposed approach is based on the dynamic adaptability and adopts the reflexivity as a model of conception and implantation. In order to protect it against behaviour analysis attempts, the suggested approach supplies the mobile agent with a flexibility faculty allowing it to present an unexpected behaviour. Furthermore, some classical protective mechanisms are used to reinforce the level of security.

Site Inspection and Evaluation Behavior of Qing Shang Concrete Bridge

It is necessary to evaluate the bridges conditions and strengthen bridges or parts of them. The reinforcement necessary due to some reasons can be summarized as: First, a changing in use of bridge could produce internal forces in a part of structural which exceed the existing cross-sectional capacity. Second, bridges may also need reinforcement because damage due to external factors which reduced the cross-sectional resistance to external loads. One of other factors could listed here its misdesign in some details, like safety of bridge or part of its.This article identify the design demands of Qing Shan bridge located in is in Heilongjiang Province He gang - Nen Jiang Road 303 provincial highway, Wudalianchi area, China, is an important bridge in the urban areas. The investigation program was include the observation and evaluate the damage in T- section concrete beams , prestressed concrete box girder bridges section in additional evaluate the whole state of bridge includes the pier , abutments , bridge decks, wings , bearing and capping beam, joints, ........etc. The test results show that the bridges in general structural condition are good. T beam span No 10 were observed, crack extended upward along the ribbed T beam, and continue to the T beam flange. Crack width varying between 0.1mm to 0.4mm, the maximum about 0.4mm. The bridge needs to be improved flexural bending strength especially at for T beam section.

Mobile Multicast Support using Old Foreign Agent (MMOFA)

IP multicasting is a key technology for many existing and emerging applications on the Internet. Furthermore, with increasing popularity of wireless devices and mobile equipment, it is necessary to determine the best way to provide this service in a wireless environment. IETF Mobile IP, that provides mobility for hosts in IP networks, proposes two approaches for mobile multicasting, namely, remote subscription (MIP-RS) and bi-directional tunneling (MIP-BT). In MIP-RS, a mobile host re-subscribes to the multicast groups each time it moves to a new foreign network. MIP-RS suffers from serious packet losses while mobile host handoff occurs. In MIP-BT, mobile hosts send and receive multicast packets by way of their home agents (HAs), using Mobile IP tunnels. Therefore, it suffers from inefficient routing and wastage of system resources. In this paper, we propose a protocol called Mobile Multicast support using Old Foreign Agent (MMOFA) for Mobile Hosts. MMOFA is derived from MIP-RS and with the assistance of Mobile host's Old foreign agent, routes the missing datagrams due to handoff in adjacent network via tunneling. Also, we studied the performance of the proposed protocol by simulation under ns-2.27. The results demonstrate that MMOFA has optimal routing efficiency and low delivery cost, as compared to other approaches.

A Critical Survey of Reusability Aspects for Component-Based Systems

The last decade has shown that object-oriented concept by itself is not that powerful to cope with the rapidly changing requirements of ongoing applications. Component-based systems achieve flexibility by clearly separating the stable parts of systems (i.e. the components) from the specification of their composition. In order to realize the reuse of components effectively in CBSD, it is required to measure the reusability of components. However, due to the black-box nature of components where the source code of these components are not available, it is difficult to use conventional metrics in Component-based Development as these metrics require analysis of source codes. In this paper, we survey few existing component-based reusability metrics. These metrics give a border view of component-s understandability, adaptability, and portability. It also describes the analysis, in terms of quality factors related to reusability, contained in an approach that aids significantly in assessing existing components for reusability.