The Importance of 3D Mesh Generation for Large Eddy Simulation of Gas – Solid Turbulent Flows in a Fluidized Beds

The objective of this work is to show a procedure for mesh generation in a fluidized bed using large eddy simulations (LES) of a filtered two-fluid model. The experimental data were obtained by [1] in a laboratory fluidized bed. Results show that it is possible to use mesh with less cells as compared to RANS turbulence model with granular kinetic theory flow (KTGF). Also, the numerical results validate the experimental data near wall of the bed, which cannot be predicted by RANS.model.

Geomatics Techniques for Urban Transport Planning

The major urban centers are all facing rapid growth is most often associated with spreading urbanization, social status of the car has also changed: it has become a commodity of mass consumption. There are currently about 5 million and 260 cars in Algeria (2008), this number increases every year 200,000 new cars. These phenomena induce a demand for greater mobility and a significant need for transport infrastructure. Faced with these problems and development of the growing use of the automobile, central governments and local authorities in charge of urban transport issues are aware of the need to develop their urban transport systems but often lack opportunities. Urban Transport Plans (PDU) were born in reaction to the "culture of automobile." Their existence in the world the '80s, however, they had little success before laws on air and rational use of energy in 90 years does not alter substantially their content and make mandatory their implementation in cities of over 100,000 inhabitants (Abroad) [1]. The objective of this work is to use the tool and specifically Geomatics techniques as decision support in the organization and management of travel while taking into consideration the influence, which will then translate by National Urban Transport Plan.

Specifying a Timestamp-based Protocol For Multi-step Transactions Using LTL

Most of the concurrent transactional protocols consider serializability as a correctness criterion of the transactions execution. Usually, the proof of the serializability relies on mathematical proofs for a fixed finite number of transactions. In this paper, we introduce a protocol to deal with an infinite number of transactions which are iterated infinitely often. We specify serializability of the transactions and the protocol using a specification language based on temporal logics. It is worthwhile using temporal logics such as LTL (Lineartime Temporal Logic) to specify transactions, to gain full automatic verification by using model checkers.

An Optimized Design of Non-uniform Filterbank

The tree structured approach of non-uniform filterbank (NUFB) is normally used in perfect reconstruction (PR). The PR is not always feasible due to certain limitations, i.e, constraints in selecting design parameters, design complexity and some times output is severely affected by aliasing error if necessary and sufficient conditions of PR is not satisfied perfectly. Therefore, there has been generalized interest of researchers to go for near perfect reconstruction (NPR). In this proposed work, an optimized tree structure technique is used for the design of NPR non-uniform filterbank. Window functions of Blackman family are used to design the prototype FIR filter. A single variable linear optimization is used to minimize the amplitude distortion. The main feature of the proposed design is its simplicity with linear phase property.

Power Line Carrier for Power Telemetering

This paper presents an application of power line carrier (PLC) for electrical power telemetering. This system has a special capability of transmitting the measured values to a centralized computer via power lines. The PLC modem as a passive high-pass filter is designed for transmitting and receiving information. Its function is to send the information carrier together with transmitted data by superimposing it on the 50 Hz power frequency signal. A microcontroller is employed to function as the main processing of the modem. It is programmed for PLC control and interfacing with other devices. Each power meter, connected via a PLC modem, is assigned with a unique identification number (address) for distinguishing each device from one another.

Stabilizer Fillet Weld Strength under Multiaxial Loading (Effect of Force, Size and Residual Stress)

In this paper, the strength of a stabilizer is determined when the static and fatigue multiaxial loading are applied. Stabilizer is a part of suspension system in the heavy truck for stabilizing the cabin against the vibration of the road which composes of a thin-walled tube joined to a forge component by fillet weld. The component is loaded by non proportional random sequence of torsion and bending. Residual stress of welding process is considered here for static loading. This static loading with road irregularities are applied in this study as fatigue case that can affected in the fillet welded area of this part. The stresses in the welded structure are calculated using FEA. In addition, the fatigue with multi axial loading in the fillet weld is also investigated and the critical zone of the stabilizer is specified and presented by graphs. Residual stresses that have been resulted by the thermal forces are considered in FEA. Force increasing is the element of finding the critical point of the component.

A New Method for Rapid DNA Extraction from Artemia (Branchiopoda, Crustacea)

Artemia is one of the most conspicuous invertebrates associated with aquaculture. It can be considered as a model organism, offering numerous advantages for comprehensive and multidisciplinary studies using morphologic or molecular methods. Since DNA extraction is an important step of any molecular experiment, a new and a rapid method of DNA extraction from adult Artemia was described in this study. Besides, the efficiency of this technique was compared with two widely used alternative techniques, namely Chelex® 100 resin and SDS-chloroform methods. Data analysis revealed that the new method is the easiest and the most cost effective method among the other methods which allows a quick and efficient extraction of DNA from the adult animal.

A Computer Aided Model for Supporting Design Education

Educating effective architect designers is an important goal of architectural education. But what contributes to students- performance, and to critical and creative thinking in architectural design education? Besides teaching architecture students how to understand logical arguments, eliminate the inadequate solutions and focus on the correct ones, it is also crucial to teach students how to focus on exploring ideas and the alternative solutions and seeking for other right answers rather than one. This paper focuses on the enhancing architectural design education and may provide implications for enhancing teaching design.

Evaluating Alternative Fuel Vehicles from Technical, Environmental and Economic Perspectives: Case of Light-Duty Vehicles in Iran

This paper presents an environmental and technoeconomic evaluation of light duty vehicles in Iran. A comprehensive well-to-wheel (WTW) analysis is applied to compare different automotive fuel chains, conventional internal combustion engines and innovative vehicle powertrains. The study examines the competitiveness of 15 various pathways in terms of energy efficiencies, GHG emissions, and levelized cost of different energy carriers. The results indicate that electric vehicles including battery electric vehicles (BEV), fuel cell vehicles (FCV) and plug-in hybrid electric vehicles (PHEV) increase the WTW energy efficiency by 54%, 51% and 46%, respectively, compared to common internal combustion engines powered by gasoline. On the other hand, greenhouse gas (GHG) emissions per kilometer of FCV and BEV would be 48% lower than that of gasoline engines. It is concluded that BEV has the lowest total cost of energy consumption and external cost of emission, followed by internal combustion engines (ICE) fueled by CNG. Conventional internal combustion engines fueled by gasoline, on the other hand, would have the highest costs.

Insights into Smoothies with High Levels of Fibre and Polyphenols: Factors Influencing Chemical, Rheological and Sensory Properties

Attempts to add fibre and polyphenols (PPs) into popular beverages present challenges related to the properties of finished products such as smoothies. Consumer acceptability, viscosity and phenolic composition of smoothies containing high levels of fruit fibre (2.5-7.5 g per 300 mL serve) and PPs (250-750 mg per 300 mL serve) were examined. The changes in total extractable PP, vitamin C content, and colour of selected smoothies over a storage stability trial (4°C, 14 days) were compared. A set of acidic aqueous model beverages were prepared to further examine the effect of two different heat treatments on the stability and extractability of PPs. Results show that overall consumer acceptability of high fibre and PP smoothies was low, with average hedonic scores ranging from 3.9 to 6.4 (on a 1-9 scale). Flavour, texture and overall acceptability decreased as fibre and polyphenol contents increased, with fibre content exerting a stronger effect. Higher fibre content resulted in greater viscosity, with an elevated PP content increasing viscosity only slightly. The presence of fibre also aided the stability and extractability of PPs after heating. A reduction of extractable PPs, vitamin C content and colour intensity of smoothies was observed after a 14-day storage period at 4°C. Two heat treatments (75°C for 45 min or 85°C for 1 min) that are normally used for beverage production, did not cause significant reduction of total extracted PPs. It is clear that high levels of added fibre and PPs greatly influence the consumer appeal of smoothies, suggesting the need to develop novel formulation and processing methods if a satisfactory functional beverage is to be developed incorporating these ingredients.

Neural Network Based Predictive DTC Algorithm for Induction Motors

In this paper, a Neural Network based predictive DTC algorithm is proposed .This approach is used as an alternative to classical approaches .An appropriate riate Feed - forward network is chosen and based on its value of derivative electromagnetic torque ; optimal stator voltage vector is determined to be applied to the induction motor (by inverter). Moreover, an appropriate torque and flux observer is proposed.

Experimental Investigation on Flexural Behaviors in Framed Structure of PST Method

Existing underground pipe jacking methods use a reinforcing rod in a steel tube to obtain structural stiffness. However, some problems such as inconvenience of works and expensive materials resulted from limited working space and reinforcing works are existed. To resolve these problems, a new pipe jacking method, namely PST (Prestressed Segment Tunnel) method, was developed which used joint to connect the steel segment and form erection structure. For evaluating the flexural capacity of the PST method structure, a experimental test was conducted. The parameters considered in the test were span-to-depth ratio of segment, diameter of steel tube at the corner, prestressing force, and welding of joint. The flexural behaviours with the effect of load capacity in serviceability state according to different parameters were examined.. The frame with long segments could increase flexural stiffness and the specimen with large diameter of concave corner showed excellent resistance ability to the negative moment. In addition, welding of joints increased the flexural capacity.

Biosynthesis and In vitro Studies of Silver Bionanoparticles Synthesized from Aspergillusspecies and its Antimicrobial Activity against Multi Drug Resistant Clinical Isolates

Antimicrobial resistant is becoming a major factor in virtually all hospital acquired infection may soon untreatable is a serious public health problem. These concerns have led to major research effort to discover alternative strategies for the treatment of bacterial infection. Nanobiotehnology is an upcoming and fast developing field with potential application for human welfare. An important area of nanotechnology for development of reliable and environmental friendly process for synthesis of nanoscale particles through biological systems In the present studies are reported on the use of fungal strain Aspergillus species for the extracellular synthesis of bionanoparticles from 1 mM silver nitrate (AgNO3) solution. The report would be focused on the synthesis of metallic bionanoparticles of silver using a reduction of aqueous Ag+ ion with the culture supernatants of Microorganisms. The bio-reduction of the Ag+ ions in the solution would be monitored in the aqueous component and the spectrum of the solution would measure through UV-visible spectrophotometer The bionanoscale particles were further characterized by Atomic Force Microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR) and Thin layer chromatography. The synthesized bionanoscale particle showed a maximum absorption at 385 nm in the visible region. Atomic Force Microscopy investigation of silver bionanoparticles identified that they ranged in the size of 250 nm - 680 nm; the work analyzed the antimicrobial efficacy of the silver bionanoparticles against various multi drug resistant clinical isolates. The present Study would be emphasizing on the applicability to synthesize the metallic nanostructures and to understand the biochemical and molecular mechanism of nanoparticles formation by the cell filtrate in order to achieve better control over size and polydispersity of the nanoparticles. This would help to develop nanomedicine against various multi drug resistant human pathogens.

Palladium-Catalyzed Hydrodechlorination for Water Remediation: Catalyst Deactivation and Regeneration

Palladium-catalyzed hydrodechlorination is a promising alternative for the treatment of environmentally relevant water bodies, such as groundwater, contaminated with chlorinated organic compounds (COCs). In the aqueous phase hydrodechlorination of COCs, Pd-based catalysts were found to have a very high catalytic activity. However, the full utilization of the catalyst-s potential is impeded by the sensitivity of the catalyst to poisoning and deactivation induced by reduced sulfur compounds (e.g. sulfides). Several regenerants have been tested before to recover the performance of sulfide-fouled Pd catalyst. But these only delivered partial success with respect to re-establishment of the catalyst activity. In this study, the deactivation behaviour of Pd/Al2O3 in the presence of sulfide was investigated. Subsequent to total deactivation the catalyst was regenerated in the aqueous phase using potassium permanganate. Under neutral pH condition, oxidative regeneration with permanganate delivered a slow recovery of catalyst activity. However, changing the pH of the bulk solution to acidic resulted in the complete recovery of catalyst activity within a regeneration time of about half an hour. These findings suggest the superiority of permanganate as regenerant in re-activating Pd/Al2O3 by oxidizing Pd-bound sulfide.

Pulsed Multi-Layered Image Filtering: A VLSI Implementation

Image convolution similar to the receptive fields found in mammalian visual pathways has long been used in conventional image processing in the form of Gabor masks. However, no VLSI implementation of parallel, multi-layered pulsed processing has been brought forward which would emulate this property. We present a technical realization of such a pulsed image processing scheme. The discussed IC also serves as a general testbed for VLSI-based pulsed information processing, which is of interest especially with regard to the robustness of representing an analog signal in the phase or duration of a pulsed, quasi-digital signal, as well as the possibility of direct digital manipulation of such an analog signal. The network connectivity and processing properties are reconfigurable so as to allow adaptation to various processing tasks.

Influence of Injection Timing and Injector Opening Pressure on Combustion Performance and P-θ Characteristics of a CI Engine Operating on Jatropha B20 Fuel

The quest for alternatefuels for a CI engine has become all the more imperative considering its importance in the economy of a nation and from the standpoint of preserving the environment. Reported in this paper are the combustion performance and P-θ characteristics of a CI engine operating on B20 biodiesel fuel derived from Jatropha oil.Itis observed that the twin effect of advancing the injection timing and increasing the injector opening pressure (IOP) up to 220 barhas resulted in minimum brake specific energy consumption and higherpeak pressure. It is also observed that the crank angle of occurrence of peak pressure progressestowards top dead center (TDC) as the timing is advanced and IOP is increased.

A Novel Machining Signal Filtering Technique: Z-notch Filter

A filter is used to remove undesirable frequency information from a dynamic signal. This paper shows that the Znotch filter filtering technique can be applied to remove the noise nuisance from a machining signal. In machining, the noise components were identified from the sound produced by the operation of machine components itself such as hydraulic system, motor, machine environment and etc. By correlating the noise components with the measured machining signal, the interested components of the measured machining signal which was less interfered by the noise, can be extracted. Thus, the filtered signal is more reliable to be analysed in terms of noise content compared to the unfiltered signal. Significantly, the I-kaz method i.e. comprises of three dimensional graphical representation and I-kaz coefficient, Z∞ could differentiate between the filtered and the unfiltered signal. The bigger space of scattering and the higher value of Z∞ demonstrated that the signal was highly interrupted by noise. This method can be utilised as a proactive tool in evaluating the noise content in a signal. The evaluation of noise content is very important as well as the elimination especially for machining operation fault diagnosis purpose. The Z-notch filtering technique was reliable in extracting noise component from the measured machining signal with high efficiency. Even though the measured signal was exposed to high noise disruption, the signal generated from the interaction between cutting tool and work piece still can be acquired. Therefore, the interruption of noise that could change the original signal feature and consequently can deteriorate the useful sensory information can be eliminated.

A Computationally Efficient Design for Prototype Filters of an M-Channel Cosine Modulated Filter Bank

The paper discusses a computationally efficient method for the design of prototype filters required for the implementation of an M-band cosine modulated filter bank. The prototype filter is formulated as an optimum interpolated FIR filter. The optimum interpolation factor requiring minimum number of multipliers is used. The model filter as well as the image suppressor will be designed using the Kaiser window. The method will seek to optimize a single parameter namely cutoff frequency to minimize the distortion in the overlapping passband.

FIR Filter Design via Linear Complementarity Problem, Messy Genetic Algorithm, and Ising Messy Genetic Algorithm

In this paper the design of maximally flat linear phase finite impulse response (FIR) filters is considered. The problem is handled with totally two different approaches. The first one is completely deterministic numerical approach where the problem is formulated as a Linear Complementarity Problem (LCP). The other one is based on a combination of Markov Random Fields (MRF's) approach with messy genetic algorithm (MGA). Markov Random Fields (MRFs) are a class of probabilistic models that have been applied for many years to the analysis of visual patterns or textures. Our objective is to establish MRFs as an interesting approach to modeling messy genetic algorithms. We establish a theoretical result that every genetic algorithm problem can be characterized in terms of a MRF model. This allows us to construct an explicit probabilistic model of the MGA fitness function and introduce the Ising MGA. Experimentations done with Ising MGA are less costly than those done with standard MGA since much less computations are involved. The least computations of all is for the LCP. Results of the LCP, random search, random seeded search, MGA, and Ising MGA are discussed.

Modeling Language for Machine Learning

For a given specific problem an efficient algorithm has been the matter of study. However, an alternative approach orthogonal to this approach comes out, which is called a reduction. In general for a given specific problem this reduction approach studies how to convert an original problem into subproblems. This paper proposes a formal modeling language to support this reduction approach. We show three examples from the wide area of learning problems. The benefit is a fast prototyping of algorithms for a given new problem.