Comparison of the Parameter using ECG with Bisepctrum Parameter using EEG during General Anesthesia

The measurement of anesthetic depth is necessary in anesthesiology. NN10 is very simple method among the RR intervals analysis methods. NN10 parameter means the numbers of above the 10 ms intervals of the normal to normal RR intervals. Bispectrum analysis is defined as 2D FFT. EEG signal reflected the non-linear peristalsis phenomena according to the change brain function. After analyzing the bispectrum of the 2 dimension, the most significant power spectrum density peaks appeared abundantly at the specific area in awakening and anesthesia state. These points are utilized to create the new index since many peaks appeared at the specific area in the frequency coordinate. The measured range of an index was 0-100. An index is 20-50 at an anesthesia, while the index is 90-60 at the awake. In this paper, the relation between NN10 parameter using ECG and bisepctrum index using EEG is observed to estimate the depth of anesthesia during anesthesia and then we estimated the utility of the anesthetic.

Ride Control of Passenger Cars with Semi-active Suspension System Using a Linear Quadratic Regulator and Hybrid Optimization Algorithm

A semi-active control strategy for suspension systems of passenger cars is presented employing Magnetorheological (MR) dampers. The vehicle is modeled with seven DOFs including the, roll pitch and bounce of car body, and the vertical motion of the four tires. In order to design an optimal controller based on the actuator constraints, a Linear-Quadratic Regulator (LQR) is designed. The design procedure of the LQR consists of selecting two weighting matrices to minimize the energy of the control system. This paper presents a hybrid optimization procedure which is a combination of gradient-based and evolutionary algorithms to choose the weighting matrices with regards to the actuator constraint. The optimization algorithm is defined based on maximum comfort and actuator constraints. It is noted that utilizing the present control algorithm may significantly reduce the vibration response of the passenger car, thus, providing a comfortable ride.

Spine Evaluation Device with Visual Feedback

The posteroanterior manipulation technique is usually include in the procedure of the lumbar spine to evaluate the intervertebral motion according to mechanical resistance. The mechanical device with visual feedback was proposed that allows one to analysis the lumbar segments mobility “in vivo" facilitating for the therapist to take its treatment evolution. The measuring system uses load cell and displacement sensor to estimate spine stiffness. In this work, the device was tested by 2 therapists, female, applying posteroanterior force techniques to 5 volunteers, female, with frequency of approximately 1.2-1.8 Hz. A test-retest procedure was used for 2 periods of day. The visual feedback results small variation of forces and cycle time during 6 cycles rhythmic application. The stiffness values showed good agreement between test-retest procedures when used same order of maximum forces.

A Generalised Relational Data Model

A generalised relational data model is formalised for the representation of data with nested structure of arbitrary depth. A recursive algebra for the proposed model is presented. All the operations are formally defined. The proposed model is proved to be a superset of the conventional relational model (CRM). The functionality and validity of the model is shown by a prototype implementation that has been undertaken in the functional programming language Miranda.

Fluid Structure Interaction Induced by Liquid Slosh in Partly Filled Road Tankers

The liquid cargo contained in a partly-filled road tank vehicle is prone to dynamic slosh movement when subjected to external disturbances. The slosh behavior has been identified as a significant factor impairing the safety of liquid cargo transportation. The laboratory experiments have been conducted for analyzing fluid slosh in partly filled tanks. The experiment results measured under forced harmonic excitations reveal the three-dimensional nature of the fluid motion and coupling between the lateral and longitudinal fluid slosh at resonance. Several spectral components are observed for the transient slosh forces, which can be associated with the excitation, resonance, and beat frequencies. The peak slosh forces and moments in the vicinity of resonance are significantly larger than those of the equivalent rigid mass. Due to the nature of coupling between sloshing fluid and vehicle body, the issue of the dynamic fluid-structure interaction is essential in the analysis of tank-vehicle dynamics. A dynamic pitch plane model of a Tridem truck incorporated the fluid slosh dynamics is developed to analyze the fluid-vehicle interaction under the straight-line braking maneuvers. The results show that the vehicle responses are highly associated with the characteristics of fluid slosh force and moment.

Proton-conducting PVA/PMA Hybrid Membranes for Fuel Cell Applications

The hybrid membranes containing inorganic materials in polymer matrix are identified as a remarkable family of proton conducting hybrid electrolytes. In this work, the proton conducting inorganic/organic hybrid membranes for proton exchange membrane fuel cells (PEMFCs) were prepared using polyvinyl alcohol (PVA), tetraethoxyorthosilane (TEOS) and heteropolyacid (HPA). The synthesized hybrid membranes were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), Scanning electron microscopy (SEM) and Thermogravimetry analysis (TGA). The effects of heteropolyacid incorporation on membrane properties, including morphology and thermal stability were extensively investigated.

A New Hybrid RMN Image Segmentation Algorithm

The development of aid's systems for the medical diagnosis is not easy thing because of presence of inhomogeneities in the MRI, the variability of the data from a sequence to the other as well as of other different source distortions that accentuate this difficulty. A new automatic, contextual, adaptive and robust segmentation procedure by MRI brain tissue classification is described in this article. A first phase consists in estimating the density of probability of the data by the Parzen-Rozenblatt method. The classification procedure is completely automatic and doesn't make any assumptions nor on the clusters number nor on the prototypes of these clusters since these last are detected in an automatic manner by an operator of mathematical morphology called skeleton by influence zones detection (SKIZ). The problem of initialization of the prototypes as well as their number is transformed in an optimization problem; in more the procedure is adaptive since it takes in consideration the contextual information presents in every voxel by an adaptive and robust non parametric model by the Markov fields (MF). The number of bad classifications is reduced by the use of the criteria of MPM minimization (Maximum Posterior Marginal).

Artificial Neural Networks Application to Improve Shunt Active Power Filter

Active Power Filters (APFs) are today the most widely used systems to eliminate harmonics compensate power factor and correct unbalanced problems in industrial power plants. We propose to improve the performances of conventional APFs by using artificial neural networks (ANNs) for harmonics estimation. This new method combines both the strategies for extracting the three-phase reference currents for active power filters and DC link voltage control method. The ANNs learning capabilities to adaptively choose the power system parameters for both to compute the reference currents and to recharge the capacitor value requested by VDC voltage in order to ensure suitable transit of powers to supply the inverter. To investigate the performance of this identification method, the study has been accomplished using simulation with the MATLAB Simulink Power System Toolbox. The simulation study results of the new (SAPF) identification technique compared to other similar methods are found quite satisfactory by assuring good filtering characteristics and high system stability.

Analytical Solution of Time-Harmonic Torsional Vibration of a Cylindrical Cavity in a Half-Space

In this article an isotropic linear elastic half-space with a cylindrical cavity of finite length is considered to be under the effect of a ring shape time-harmonic torsion force applied at an arbitrary depth on the surface of the cavity. The equation of equilibrium has been written in a cylindrical coordinate system. By means of Fourier cosine integral transform, the non-zero displacement component is obtained in the transformed domain. With the aid of the inversion theorem of the Fourier cosine integral transform, the displacement is obtained in the real domain. With the aid of boundary conditions, the involved boundary value problem for the fundamental solution is reduced to a generalized Cauchy singular integral equation. Integral representation of the stress and displacement are obtained, and it is shown that their degenerated form to the static problem coincides with existing solutions in the literature.

The Anti-Noise System for Rail Brakes on Hump Yards

The friction between two metal surfaces results in a high frequency noise (squealing) which also occurs during the braking of wagons with rail brakes in the process of shunting at a marshalling yard with a hump. At that point the noise level may exceed 130dB, which is extremely unpleasant for workers and inhabitants. In our research we developed a new composite material which does not change braking properties, is capable of taking extremely high pressure loads, reduces noise and is environmentally friendly. The noise reduction results had been very good and had shown a decrease of the high frequency noise almost completely (by 99%) at its source. With our technology we had also reduced general noise by more than 30dBA.

A Serial Hierarchical Support Vector Machine and 2D Feature Sets Act for Brain DTI Segmentation

Serial hierarchical support vector machine (SHSVM) is proposed to discriminate three brain tissues which are white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). SHSVM has novel classification approach by repeating the hierarchical classification on data set iteratively. It used Radial Basis Function (rbf) Kernel with different tuning to obtain accurate results. Also as the second approach, segmentation performed with DAGSVM method. In this article eight univariate features from the raw DTI data are extracted and all the possible 2D feature sets are examined within the segmentation process. SHSVM succeed to obtain DSI values higher than 0.95 accuracy for all the three tissues, which are higher than DAGSVM results.

Tele-Operated Anthropomorphic Arm and Hand Design

In this project, a tele-operated anthropomorphic robotic arm and hand is designed and built as a versatile robotic arm system. The robot has the ability to manipulate objects such as pick and place operations. It is also able to function by itself, in standalone mode. Firstly, the robotic arm is built in order to interface with a personal computer via a serial servo controller circuit board. The circuit board enables user to completely control the robotic arm and moreover, enables feedbacks from user. The control circuit board uses a powerful integrated microcontroller, a PIC (Programmable Interface Controller). The PIC is firstly programmed using BASIC (Beginner-s All-purpose Symbolic Instruction Code) and it is used as the 'brain' of the robot. In addition a user friendly Graphical User Interface (GUI) is developed as the serial servo interface software using Microsoft-s Visual Basic 6. The second part of the project is to use speech recognition control on the robotic arm. A speech recognition circuit board is constructed with onboard components such as PIC and other integrated circuits. It replaces the computers- Graphical User Interface. The robotic arm is able to receive instructions as spoken commands through a microphone and perform operations with respect to the commands such as picking and placing operations.

Using Interpretive Structural Modeling to Determine the Relationships among Knowledge Management Criteria inside Malaysian Organizations

This paper is concerned with the establishment of relationships among knowledge management (KM) criteria that will ensure an essential foundation to evaluate KM outcomes. The major issue under investigation is to assess the popularity of criteria within organizations and to establish a structure of criteria for measuring KM results. An empirical survey was conducted among Malaysian organizations to investigate KM criteria for measuring success of KM initiatives. Therefore, knowledge workers as the respondents were targeted to establish a structure of criteria for evaluating KM outcomes. An established structure of criteria based on the Interpretive Structural Modeling (ISM) is used to map criteria relationships inside organizations. This structure is portrayed to identify that how these set of criteria are related. This network schema should be investigated and implemented to promote innovation and improve enterprise performance. To the researchers, this survey has significant insights into relationship between KM programs and business success.

The Intersubjective Dynamic Regarding Commercial Failures of Foreign Migration of Brands in Food Industry

On the basis of questionnaires and interviews of two samples of subjects (French and Anglo-Saxon) for which two food products were presented (one of the subject’s country and one of the foreign country), we have shown how consumers could be sensitive to the label or brand written on the package of the food product. Furthermore, in the light of Intersubjectivity theory, we have shown the necessity for the consumer to find congruence between the direct and meta perspective towards the product for which the producer and especially the marketer is responsible. Taking into account these findings may help to avoid the commercial failure of a brand while exported abroad.

Parametric Vibrations of Periodic Shells

Thin linear-elastic cylindrical circular shells having a micro-periodic structure along two directions tangent to the shell midsurface (biperiodic shells) are object of considerations. The aim of this paper is twofold. First, we formulate an averaged nonasymptotic model for the analysis of parametric vibrations or dynamical stability of periodic shells under consideration, which has constant coefficients and takes into account the effect of a cell size on the overall shell behavior (a length-scale effect). This model is derived employing the tolerance modeling procedure. Second we apply the obtained model to derivation of frequency equation being a starting point in the analysis of parametric vibrations. The effect of the microstructure length oh this frequency equation is discussed.

Frontal EEG Asymmetry Based Classification of Emotional Valence using Common Spatial Patterns

In this work we evaluate the possibility of predicting the emotional state of a person based on the EEG. We investigate the problem of classifying valence from EEG signals during the presentation of affective pictures, utilizing the "frontal EEG asymmetry" phenomenon. To distinguish positive and negative emotions, we applied the Common Spatial Patterns algorithm. In contrast to our expectations, the affective pictures did not reliably elicit changes in frontal asymmetry. The classifying task thereby becomes very hard as reflected by the poor classifier performance. We suspect that the masking of the source of the brain activity related to emotions, coming mostly from deeper structures in the brain, and the insufficient emotional engagement are among main reasons why it is difficult to predict the emotional state of a person.

Knowledge Based Concept Analysis Method using Concept Maps and UML: Security Notion Case

One of the most ancient humankind concerns is knowledge formalization i.e. what a concept is. Concept Analysis, a branch of analytical philosophy, relies on the purpose of decompose the elements, relations and meanings of a concept. This paper aims at presenting a method to make a concept analysis obtaining a knowledge representation suitable to be processed by a computer system using either object-oriented or ontology technologies. Security notion is, usually, known as a set of different concepts related to “some kind of protection". Our method concludes that a more general framework for the concept, despite it is dynamic, is possible and any particular definition (instantiation) depends on the elements used by its construction instead of the concept itself.

Tuberculin, Tetanus Immunoglobulin and DPT Vaccine as an Avian in vivo T- Lymphocyte Mitogens

The avian phytohaemagglutinin skin test is being proved as an in vivo system for the evaluation an avian in vivo T cell mitogenicity. The test system was one week old Gallus domesticus broiler Chickens. Five replicates were done for each of the whole, 1:10 dilutions of each of 0.05 IU tuberculin, tetanus immunoglobulin and DPT vaccine as test materials. The evaluation parameters were the skin indurations and lymphoblast percentages in bone marrow lymphocytes. Tuberculin indurations were 2.06 and 1.26mm for 0.05 IU respectively while lymphoblast percent were 0.234 and 0.1 accordingly. The skin indurations of 135mg/ml and 1.35mg/ml tetanus immunoglobulin were 4.86 and 3.96mm while lymphoblast percentages were 0.3 and 0.14 respectively. The whole DPT and 1:10 concentration were with 4.5 and 3.2mm while their lymphoblast percentages were 0.28 and 0.12 accordingly. Thus the mitogenicity of the test materials was of dependant type.

Research on the Predict Method of Random Vibration Cumulative Fatigue Damage Life Based on the Finite Element Analysis

Aiming at most of the aviation products are facing the problem of fatigue fracture in vibration environment, we makes use of the testing result of a bracket, analysis for the structure with ANSYS-Workbench, predict the life of the bracket by different ways, and compared with the testing result. With the research on analysis methods, make an organic combination of simulation analysis and testing, Not only ensure the accuracy of simulation analysis and life predict, but also make a dynamic supervision of product life process, promote the application of finite element simulation analysis in engineering practice.

Electrical Resistivity of Subsurface: Field and Laboratory Assessment

The objective of this paper is to study the electrical resistivity complexity between field and laboratory measurement, in order to improve the effectiveness of data interpretation for geophysical ground resistivity survey. The geological outcrop in Penang, Malaysia with an obvious layering contact was chosen as the study site. Two dimensional geoelectrical resistivity imaging were used in this study to maps the resistivity distribution of subsurface, whereas few subsurface sample were obtained for laboratory advance. In this study, resistivity of samples in original conditions is measured in laboratory by using time domain low-voltage technique, particularly for granite core sample and soil resistivity measuring set for soil sample. The experimentation results from both schemes are studied, analyzed, calibrated and verified, including basis and correlation, degree of tolerance and characteristics of substance. Consequently, the significant different between both schemes is explained comprehensively within this paper.