Evaluation of a New Method for Detection of Kidney Stone during Laparoscopy Using 3D Conceptual Modeling

Minimally invasive surgery (MIS) is now being widely used as a preferred choice for various types of operations. The need to detect various tactile properties, justifies the key role of tactile sensing that is currently missing in MIS. In this regard, Laparoscopy is one of the methods of minimally invasive surgery that can be used in kidney stone removal surgeries. At this moment, determination of the exact location of stone during laparoscopy is one of the limitations of this method that no scientific solution has been found for so far. Artificial tactile sensing is a new method for obtaining the characteristics of a hard object embedded in a soft tissue. Artificial palpation is an important application of artificial tactile sensing that can be used in different types of surgeries. In this study, a new method for determining the exact location of stone during laparoscopy is presented. In the present study, the effects of stone existence on the surface of kidney were investigated using conceptual 3D model of kidney containing a simulated stone. Having imitated palpation and modeled it conceptually, indications of stone existence that appear on the surface of kidney were determined. A number of different cases were created and solved by the software and using stress distribution contours and stress graphs, it is illustrated that the created stress patterns on the surface of kidney show not only the existence of stone inside, but also its exact location. So three-dimensional analysis leads to a novel method of predicting the exact location of stone and can be directly applied to the incorporation of tactile sensing in artificial palpation, helping surgeons in non-invasive procedures.

State Feedback Speed Controller for Turbocharged Diesel Engine and Its Robustness

In this paper, the full state feedback controllers capable of regulating and tracking the speed trajectory are presented. A fourth order nonlinear mean value model of a 448 kW turbocharged diesel engine published earlier is used for the purpose. For designing controllers, the nonlinear model is linearized and represented in state-space form. Full state feedback controllers capable of meeting varying speed demands of drivers are presented. Main focus here is to investigate sensitivity of the controller to the perturbations in the parameters of the original nonlinear model. Suggested controller is shown to be highly insensitive to the parameter variations. This indicates that the controller is likely perform with same accuracy even after significant wear and tear of engine due to its use for years.

Neural Networks Approaches for Computing the Forward Kinematics of a Redundant Parallel Manipulator

In this paper, different approaches to solve the forward kinematics of a three DOF actuator redundant hydraulic parallel manipulator are presented. On the contrary to series manipulators, the forward kinematic map of parallel manipulators involves highly coupled nonlinear equations, which are almost impossible to solve analytically. The proposed methods are using neural networks identification with different structures to solve the problem. The accuracy of the results of each method is analyzed in detail and the advantages and the disadvantages of them in computing the forward kinematic map of the given mechanism is discussed in detail. It is concluded that ANFIS presents the best performance compared to MLP, RBF and PNN networks in this particular application.

On The Analysis of a Compound Neural Network for Detecting Atrio Ventricular Heart Block (AVB) in an ECG Signal

Heart failure is the most common reason of death nowadays, but if the medical help is given directly, the patient-s life may be saved in many cases. Numerous heart diseases can be detected by means of analyzing electrocardiograms (ECG). Artificial Neural Networks (ANN) are computer-based expert systems that have proved to be useful in pattern recognition tasks. ANN can be used in different phases of the decision-making process, from classification to diagnostic procedures. This work concentrates on a review followed by a novel method. The purpose of the review is to assess the evidence of healthcare benefits involving the application of artificial neural networks to the clinical functions of diagnosis, prognosis and survival analysis, in ECG signals. The developed method is based on a compound neural network (CNN), to classify ECGs as normal or carrying an AtrioVentricular heart Block (AVB). This method uses three different feed forward multilayer neural networks. A single output unit encodes the probability of AVB occurrences. A value between 0 and 0.1 is the desired output for a normal ECG; a value between 0.1 and 1 would infer an occurrence of an AVB. The results show that this compound network has a good performance in detecting AVBs, with a sensitivity of 90.7% and a specificity of 86.05%. The accuracy value is 87.9%.

A Wireless Secure Remote Access Architecture Implementing Role Based Access Control: WiSeR

In this study, we propose a network architecture for providing secure access to information resources of enterprise network from remote locations in a wireless fashion. Our proposed architecture offers a very promising solution for organizations which are in need of a secure, flexible and cost-effective remote access methodology. Security of the proposed architecture is based on Virtual Private Network technology and a special role based access control mechanism with location and time constraints. The flexibility mainly comes from the use of Internet as the communication medium and cost-effectiveness is due to the possibility of in-house implementation of the proposed architecture.

Mobile to Server Face Recognition: A System Overview

This paper presents a system overview of Mobile to Server Face Recognition, which is a face recognition application developed specifically for mobile phones. Images taken from mobile phone cameras lack of quality due to the low resolution of the cameras. Thus, a prototype is developed to experiment the chosen method. However, this paper shows a result of system backbone without the face recognition functionality. The result demonstrated in this paper indicates that the interaction between mobile phones and server is successfully working. The result shown before the database is completely ready. The system testing is currently going on using real images and a mock-up database to test the functionality of the face recognition algorithm used in this system. An overview of the whole system including screenshots and system flow-chart are presented in this paper. This paper also presents the inspiration or motivation and the justification in developing this system.

Joint Microstatistic Multiuser Detection and Cancellation of Nonlinear Distortion Effects for the Uplink of MC-CDMA Systems Using Golay Codes

The study in this paper underlines the importance of correct joint selection of the spreading codes for uplink of multicarrier code division multiple access (MC-CDMA) at the transmitter side and detector at the receiver side in the presence of nonlinear distortion due to high power amplifier (HPA). The bit error rate (BER) of system for different spreading sequences (Walsh code, Gold code, orthogonal Gold code, Golay code and Zadoff-Chu code) and different kinds of receivers (minimum mean-square error receiver (MMSE-MUD) and microstatistic multi-user receiver (MSF-MUD)) is compared by means of simulations for MC-CDMA transmission system. Finally, the results of analysis will show, that the application of MSF-MUD in combination with Golay codes can outperform significantly the other tested spreading codes and receivers for all mostly used models of HPA.

Simulation and Parameterization by the Finite Element Method of a C Shape Delectromagnet for Application in the Characterization of Magnetic Properties of Materials

This article presents the simulation, parameterization and optimization of an electromagnet with the C–shaped configuration, intended for the study of magnetic properties of materials. The electromagnet studied consists of a C-shaped yoke, which provides self–shielding for minimizing losses of magnetic flux density, two poles of high magnetic permeability and power coils wound on the poles. The main physical variable studied was the static magnetic flux density in a column within the gap between the poles, with 4cm2 of square cross section and a length of 5cm, seeking a suitable set of parameters that allow us to achieve a uniform magnetic flux density of 1x104 Gaussor values above this in the column, when the system operates at room temperature and with a current consumption not exceeding 5A. By means of a magnetostatic analysis by the finite element method, the magnetic flux density and the distribution of the magnetic field lines were visualized and quantified. From the results obtained by simulating an initial configuration of electromagnet, a structural optimization of the geometry of the adjustable caps for the ends of the poles was performed. The magnetic permeability effect of the soft magnetic materials used in the poles system, such as low– carbon steel (0.08% C), Permalloy (45% Ni, 54.7% Fe) and Mumetal (21.2% Fe, 78.5% Ni), was also evaluated. The intensity and uniformity of the magnetic field in the gap showed a high dependence with the factors described above. The magnetic field achieved in the column was uniform and its magnitude ranged between 1.5x104 Gauss and 1.9x104 Gauss according to the material of the pole used, with the possibility of increasing the magnetic field by choosing a suitable geometry of the cap, introducing a cooling system for the coils and adjusting the spacing between the poles. This makes the device a versatile and scalable tool to generate the magnetic field necessary to perform magnetic characterization of materials by techniques such as vibrating sample magnetometry (VSM), Hall-effect, Kerr-effect magnetometry, among others. Additionally, a CAD design of the modules of the electromagnet is presented in order to facilitate the construction and scaling of the physical device.

Comparative Study on Recent Integer DCTs

This paper presents comparative study on recent integer DCTs and a new method to construct a low sensitive structure of integer DCT for colored input signals. The method refers to sensitivity of multiplier coefficients to finite word length as an indicator of how word length truncation effects on quality of output signal. The sensitivity is also theoretically evaluated as a function of auto-correlation and covariance matrix of input signal. The structure of integer DCT algorithm is optimized by combination of lower sensitive lifting structure types of IRT. It is evaluated by the sensitivity of multiplier coefficients to finite word length expression in a function of covariance matrix of input signal. Effectiveness of the optimum combination of IRT in integer DCT algorithm is confirmed by quality improvement comparing with existing case. As a result, the optimum combination of IRT in each integer DCT algorithm evidently improves output signal quality and it is still compatible with the existing one.

An Efficient Approach to Mining Frequent Itemsets on Data Streams

The increasing importance of data stream arising in a wide range of advanced applications has led to the extensive study of mining frequent patterns. Mining data streams poses many new challenges amongst which are the one-scan nature, the unbounded memory requirement and the high arrival rate of data streams. In this paper, we propose a new approach for mining itemsets on data stream. Our approach SFIDS has been developed based on FIDS algorithm. The main attempts were to keep some advantages of the previous approach and resolve some of its drawbacks, and consequently to improve run time and memory consumption. Our approach has the following advantages: using a data structure similar to lattice for keeping frequent itemsets, separating regions from each other with deleting common nodes that results in a decrease in search space, memory consumption and run time; and Finally, considering CPU constraint, with increasing arrival rate of data that result in overloading system, SFIDS automatically detect this situation and discard some of unprocessing data. We guarantee that error of results is bounded to user pre-specified threshold, based on a probability technique. Final results show that SFIDS algorithm could attain about 50% run time improvement than FIDS approach.

A Methodology for Reducing the BGP Convergence Time

Border Gateway Protocol (BGP) is the standard routing protocol between various autonomous systems (AS) in the internet. In the event of failure, a considerable delay in the BGP convergence has been shown by empirical measurements. During the convergence time the BGP will repeatedly advertise new routes to some destination and withdraw old ones until it reach a stable state. It has been found that the KEEPALIVE message timer and the HOLD time are tow parameters affecting the convergence speed. This paper aims to find the optimum value for the KEEPALIVE timer and the HOLD time that maximally reduces the convergence time without increasing the traffic. The KEEPALIVE message timer optimal value founded by this paper is 30 second instead of 60 seconds, and the optimal value for the HOLD time is 90 seconds instead of 180 seconds.

Shape-Based Image Retrieval Using Shape Matrix

Retrieval image by shape similarity, given a template shape is particularly challenging, owning to the difficulty to derive a similarity measurement that closely conforms to the common perception of similarity by humans. In this paper, a new method for the representation and comparison of shapes is present which is based on the shape matrix and snake model. It is scaling, rotation, translation invariant. And it can retrieve the shape images with some missing or occluded parts. In the method, the deformation spent by the template to match the shape images and the matching degree is used to evaluate the similarity between them.

Gasoline and Diesel Production via Fischer- Tropsch Synthesis over Cobalt Based Catalyst

Performance of a cobalt doped sol-gel derived silica (Co/SiO2) catalyst for Fischer–Tropsch synthesis (FTS) in slurryphase reactor was studied using paraffin wax as initial liquid media. The reactive mixed gas, hydrogen (H2) and carbon monoxide (CO) in a molar ratio of 2:1, was flowed at 50 ml/min. Braunauer-Emmett- Teller (BET) surface area and X-ray diffraction (XRD) techniques were employed to characterize both the specific surface area and crystallinity of the catalyst, respectively. The reduction behavior of Co/SiO2 catalyst was investigated using the Temperature Programmmed Reduction (TPR) method. Operating temperatures were varied from 493 to 533K to find the optimum conditions to maximize liquid fuels production, gasoline and diesel.

Removal of Hexavalent Chromium from Wastewater by Use of Scrap Iron

Hexavalent chromium is highly toxic to most living organisms and a known human carcinogen by the inhalation route of exposure. Therefore, treatment of Cr(VI) contaminated wastewater is essential before their discharge to the natural water bodies. Cr(VI) reduction to Cr(III) can be beneficial because a more mobile and more toxic chromium species is converted to a less mobile and less toxic form. Zero-valence-state metals, such as scrap iron, can serve as electron donors for reducing Cr(VI) to Cr(III). The influence of pH on scrap iron capacity to reduce Cr(VI) was investigated in this study. Maximum reduction capacity of scrap iron was observed at the beginning of the column experiments; the lower the pH, the greater the experiment duration with maximum scrap iron reduction capacity. The experimental results showed that highest maximum reduction capacity of scrap iron was 12.5 mg Cr(VI)/g scrap iron, at pH 2.0, and decreased with increasing pH up to 1.9 mg Cr(VI)/g scrap iron at pH = 7.3.

Analysis of Explosive Shock Wave and its Application in Snow Avalanche Release

Avalanche velocity (from start to track zone) has been estimated in the present model for an avalanche which is triggered artificially by an explosive devise. The initial development of the model has been from the concept of micro-continuum theories [1], underwater explosions [2] and from fracture mechanics [3] with appropriate changes to the present model. The model has been computed for different slab depth R, slope angle θ, snow density ¤ü, viscosity μ, eddy viscosity η*and couple stress parameter η. The applicability of the present model in the avalanche forecasting has been highlighted.

Semantic Mobility Channel (SMC): Ubiquitous and Mobile Computing Meets the Semantic Web

With the advent of emerging personal computing paradigms such as ubiquitous and mobile computing, Web contents are becoming accessible from a wide range of mobile devices. Since these devices do not have the same rendering capabilities, Web contents need to be adapted for transparent access from a variety of client agents. Such content adaptation is exploited for either an individual element or a set of consecutive elements in a Web document and results in better rendering and faster delivery to the client device. Nevertheless, Web content adaptation sets new challenges for semantic markup. This paper presents an advanced components platform, called SMC, enabling the development of mobility applications and services according to a channel model based on the principles of Services Oriented Architecture (SOA). It then goes on to describe the potential for integration with the Semantic Web through a novel framework of external semantic annotation that prescribes a scheme for representing semantic markup files and a way of associating Web documents with these external annotations. The role of semantic annotation in this framework is to describe the contents of individual documents themselves, assuring the preservation of the semantics during the process of adapting content rendering. Semantic Web content adaptation is a way of adding value to Web contents and facilitates repurposing of Web contents (enhanced browsing, Web Services location and access, etc).

Analysis of Complex Quadrature Mirror Filter Banks

This work consists of three parts. First, the alias-free condition for the conventional two-channel quadrature mirror filter bank is analyzed using complex arithmetic. Second, the approach developed in the first part is applied to the complex quadrature mirror filter bank. Accordingly, the structure is simplified and the theory is easier to follow. Finally, a new class of complex quadrature mirror filter banks is proposed. Interesting properties of this new structure are also discussed.

Solving Part Type Selection and Loading Problem in Flexible Manufacturing System Using Real Coded Genetic Algorithms – Part II: Optimization

This paper presents modeling and optimization of two NP-hard problems in flexible manufacturing system (FMS), part type selection problem and loading problem. Due to the complexity and extent of the problems, the paper was split into two parts. The first part of the papers has discussed the modeling of the problems and showed how the real coded genetic algorithms (RCGA) can be applied to solve the problems. This second part discusses the effectiveness of the RCGA which uses an array of real numbers as chromosome representation. The novel proposed chromosome representation produces only feasible solutions which minimize a computational time needed by GA to push its population toward feasible search space or repair infeasible chromosomes. The proposed RCGA improves the FMS performance by considering two objectives, maximizing system throughput and maintaining the balance of the system (minimizing system unbalance). The resulted objective values are compared to the optimum values produced by branch-and-bound method. The experiments show that the proposed RCGA could reach near optimum solutions in a reasonable amount of time.

On Formalizing Predefined OCL Properties

The ability of UML to handle the modeling process of complex industrial software applications has increased its popularity to the extent of becoming the de-facto language in serving the design purpose. Although, its rich graphical notation naturally oriented towards the object-oriented concept, facilitates the understandability, it hardly successes to report all domainspecific aspects in a satisfactory way. OCL, as the standard language for expressing additional constraints on UML models, has great potential to help improve expressiveness. Unfortunately, it suffers from a weak formalism due to its poor semantic resulting in many obstacles towards the build of tools support and thus its application in the industry field. For this reason, many researches were established to formalize OCL expressions using a more rigorous approach. Our contribution join this work in a complementary way since it focuses specifically on OCL predefined properties which constitute an important part in the construction of OCL expressions. Using formal methods, we mainly succeed in expressing rigorously OCL predefined functions.

The Use of Dynamically Optimised High Frequency Moving Average Strategies for Intraday Trading

This paper is motivated by the aspect of uncertainty in financial decision making, and how artificial intelligence and soft computing, with its uncertainty reducing aspects can be used for algorithmic trading applications that trade in high frequency. This paper presents an optimized high frequency trading system that has been combined with various moving averages to produce a hybrid system that outperforms trading systems that rely solely on moving averages. The paper optimizes an adaptive neuro-fuzzy inference system that takes both the price and its moving average as input, learns to predict price movements from training data consisting of intraday data, dynamically switches between the best performing moving averages, and performs decision making of when to buy or sell a certain currency in high frequency.