An Experimental Study and Influence of BHF and Die Radius in Deep Drawing Process on the Springback

A lot of research made during these last 15 years showed that the quantification of the springback has a significant role in the industry of sheet metal forming. These studies were made with the objective of finding techniques and methods to minimize or completely avoid this permanent physical variation. Moreover, the use of steel and aluminum alloys in the car industry and aviation poses every day the problem of the springback. The determination in advance of the quantity of the springback allows consequently the design and manufacture of the tool. The aim of this paper is to study experimentally the influence of the blank holder force BHF and the radius of curvature of the die on the springback and their influence on the strain in various zone of specimen. The original of our purpose consist on tests which are ensured by adapting a U-type stretching-bending device on a tensile testing machine, where we studied and quantified the variation of the springback according to displacement.

Evolutionary Algorithms for Learning Primitive Fuzzy Behaviors and Behavior Coordination in Multi-Objective Optimization Problems

Evolutionary robotics is concerned with the design of intelligent systems with life-like properties by means of simulated evolution. Approaches in evolutionary robotics can be categorized according to the control structures that represent the behavior and the parameters of the controller that undergo adaptation. The basic idea is to automatically synthesize behaviors that enable the robot to perform useful tasks in complex environments. The evolutionary algorithm searches through the space of parameterized controllers that map sensory perceptions to control actions, thus realizing a specific robotic behavior. Further, the evolutionary algorithm maintains and improves a population of candidate behaviors by means of selection, recombination and mutation. A fitness function evaluates the performance of the resulting behavior according to the robot-s task or mission. In this paper, the focus is in the use of genetic algorithms to solve a multi-objective optimization problem representing robot behaviors; in particular, the A-Compander Law is employed in selecting the weight of each objective during the optimization process. Results using an adaptive fitness function show that this approach can efficiently react to complex tasks under variable environments.

Control of Pendulum on a Cart with State Dependent Riccati Equations

State Dependent Riccati Equation (SDRE) approach is a modification of the well studied LQR method. It has the capability of being applied to control nonlinear systems. In this paper the technique has been applied to control the single inverted pendulum (SIP) which represents a rich class of nonlinear underactuated systems. SIP modeling is based on Euler-Lagrange equations. A procedure is developed for judicious selection of weighting parameters and constraint handling. The controller designed by SDRE technique here gives better results than existing controllers designed by energy based techniques.

Payment Problems, Cash Flow and Profitability of Construction Project: A System Dynamics Model

The ubiquitous payment problems within construction industry of China are notoriously hard to be resolved, thus lead to a series of impacts to the industry chain. Among of them, the most direct result is affecting the normal operation of contractors negatively. A wealth of research has already discussed reasons of the payment problems by introducing a number of possible improvement strategies. But the causalities of these problems are still far from harsh reality. In this paper, the authors propose a model for cash flow system of construction projects by introducing System Dynamics techniques to explore causal facets of the payment problem. The effects of payment arrears on both cash flow and profitability of project are simulated into four scenarios by using data from real projects. Simulating results show visible clues to help contractors quantitatively determining the consequences for the construction project that arise from payment delay.

A Study of Relationship between WBGT and Relative Humidity to Worker Performance

The environmental factors such as temperature and relative humidity are very contribute to the effect of comfort, health, performance and worker productivity. To ensure an ergonomics work environment, it is possible to require a specific attention especially in industries. The aim of this study is to show the effect of temperature and relative humidity on worker productivity in automotive industry by taking a workstation in an automotive plant as the location to conduct the study. From the analysis of the data, there were relationship between temperature and relative humidity on worker productivity. Mathematical equation to represent the relationship between temperatures and relative humidity on the production rate is modelled. From the equation model, the production rate for the workstation can be predicted base on the value of temperature and relative humidity.

Integrated Use of Animal Manure and Inorganic Fertilizer on Growth and Yield of Vegetable Cowpea (Vigna uniquiculata)

Field experiment was conducted to investigate the combine use of animal manure and inorganic fertilizer on growth and yield performance of vegetable cowpea. The experiment was laid out in a Randomized Complete Block Design (RCBD) with seven treatments. Poultry manure, cattle manure and goat manure were evaluated with recommended level of inorganic fertilizer for vegetable cowpea. The highest crop yield was obtained by the application of poultry manure combined with the recommended level of inorganic fertilizer. The lowest yield was obtained by the application of goat manure only. In addition, the results revealed that the goat manure and cattle manure were inferior to poultry manure as a source of organic manure for vegetable cowpea cultivation. The animal manure combine with chemical fertilizer gave a higher yield when compared to the sole application of animal manure. The soil analysis showed that the nitrogen content and phosphorus content of poultry manure treated plots were higher than other treatments tested. But potassium content was higher in goat manure treated plots. The results further revealed that the poultry manure has a beneficial effect on crop growth and yield compared with other treatments. Therefore, the combined use of poultry manure with inorganic fertilizer application has been recognized as the most suitable way of ensuring high crop yield.

Self-Sensing versus Reference Air Gaps

Self-sensing estimates the air gap within an electro magnetic path by analyzing the bearing coil current and/or voltage waveform. The self-sensing concept presented in this paper has been developed within the research project “Active Magnetic Bearings with Supreme Reliability" and is used for position sensor fault detection. Within this new concept gap calculation is carried out by an alldigital analysis of the digitized coil current and voltage waveform. For analysis those time periods within the PWM period are used, which give the best results. Additionally, the concept allows the digital compensation of nonlinearities, for example magnetic saturation, without degrading signal quality. This increases the accuracy and robustness of the air gap estimation and additionally reduces phase delays. Beneath an overview about the developed concept first measurement results are presented which show the potential of this all-digital self-sensing concept.

Evaluation of Torsional Efforts on Thermal Machines Shaft with Gas Turbine resulting of Automatic Reclosing

This paper analyses the torsional efforts in gas turbine-generator shafts caused by high speed automatic reclosing of transmission lines. This issue is especially important for cases of three phase short circuit and unsuccessful reclosure of lines in the vicinity of the thermal plant. The analysis was carried out for the thermal plant TERMOPERNAMBUCO located on Northeast region of Brazil. It is shown that stress level caused by lines unsuccessful reclosing can be several times higher than terminal three-phase short circuit. Simulations were carried out with detailed shaft torsional model provided by machine manufacturer and with the “Alternative Transient Program – ATP" program [1]. Unsuccessful three phase reclosing for selected lines in the area closed to the plant indicated most critical cases. Also, reclosing first the terminal next to the gas turbine gererator will lead also to the most critical condition. Considering that the values of transient torques are very sensible to the instant of reclosing, simulation of unsuccessful reclosing with statistics ATP switch were carried out for determination of most critical transient torques for each section of the generator turbine shaft.

Noise Level Investigation in Printing Industry in Novi Sad, Serbia

The aim of this study was to determine noise level of six different types of machines in printing companies in Novi Sad. The A-weighted levels on Leq, Lmax and Lmin Sound Pressure Level (SPL) in dBA were measured. It was found that the folders, offset printing presses and binding machines are the predominant noise sources. The noise levels produced by 12 of 38 machines exceed the limiting threshold level of 85 dBA, tolerated by law. Since it was determined that the average noise level for folders (87.7 dB) exceeds the permitted value the octave analysis of noise was performed.

Culture and Creativity as Driving Forces for Urban Regeneration in Serbia

This paper develops a critical perspective on using culture and creativity as tools for urban regeneration. Following a brief assessment of the evolution of cultural policy in recent decades and different urban regeneration scheme, the concepts of creativity and creative cities are discussed. This is followed by an attempt to clarify the relationship between the concepts of creativity and culture. A more detailed critique of cultural and creative initiatives in Serbian cities is then undertaken. These attempts show that the potential for development of urban regeneration driven by culture and creativity exist. But, these initiatives failed to produce adequate results because they did not take root as a comprehensive urban regeneration strategy, therefore, recommendations for further development are offered.

Dynamic Interrelationship among the Stock Markets of India, Pakistan and United States

The interrelationship between international stock markets has been a key study area among the financial market researchers for international portfolio management and risk measurement. The characteristics of security returns and their dynamics play a vital role in the financial market theory. This study is an attempt to find out the dynamic linkages among the equity market of USA and emerging markets of Pakistan and India using daily data covering the period of January 2003–December 2009. The study utilizes Johansen (Journal of Economic Dynamics and Control, 12, 1988) and Johansen and Juselius (Oxford Bulletin of Economics and Statistics, 52, 1990) cointegration procedure for long run relationship and Granger-causality tests based on Toda and Yamamoto (Journal of Econometrics, 66, 1995) methodology. No cointegration was found among stock markets of USA, Pakistan and India, while Granger-causality test showed the evidence of unidirectional causality running from New York stock exchange to Bombay and Karachi stock exchanges.

Statistical Analysis of Stresses in Rigid Pavement

Complex statistical analysis of stresses in concrete slab of the real type of rigid pavement is performed. The computational model of the pavement is designed as a spatial (3D) model, is based on a nonlinear variant of the finite element method that respects the structural nonlinearity, enables to model different arrangement of joints, and the entire model can be loaded by the thermal load. Interaction of adjacent slabs in joints and contact of the slab and the subsequent layer are modeled with help of special contact elements. Four concrete slabs separated by transverse and longitudinal joints and the additional subgrade layers and soil to the depth of about 3m are modeled. The thickness of individual layers, physical and mechanical properties of materials, characteristics of joints, and the temperature of the upper and lower surface of slabs are supposed to be random variables. The modern simulation technique Updated Latin Hypercube Sampling with 20 simulations is used for statistical analysis. As results, the estimates of basic statistics of the principal stresses s1 and s3 in 53 points on the upper and lower surface of the slabs are obtained.

Interaction Effect of DGAT1 and Composite Genotype of Beta-Kappa Casein on Economic Milk Production Traits in Crossbred Holstein

The objective was to determine the single gene and interaction effect of composite genotype of beta-kappa casein and DGAT1 gene on milk yield (MY) and milk composition, content of milk fat (%FAT), milk protein (%PRO), solid not fat (%SNF), and total solid (%TS) in crossbred Holstein cows. Two hundred and thirty- one cows were genotyped with PCR-RFLP for DGAT1 and composite genotype data of beta-kappa casein from previous work were used. Two model, (1), and (2), was used to estimate single gene effect, and interaction effect on the traits, respectively. The significance of interaction effects on all traits were detected. Most traits have consistent pattern of significant when model (1), and (2) were compared, except the effect of composite genotype of betakappa casein on %FAT, and the effect of DGAT1 on MY, which the significant difference was detected in only model (1).The results suggested that when the optimum of all traits was necessary, interaction effect should be concerned.

A Scatter Search and Help Policies Approaches for a New Mixed Model Assembly Lines Sequencing Problem

Mixed Model Production is the practice of assembling several distinct and different models of a product on the same assembly line without changeovers and then sequencing those models in a way that smoothes the demand for upstream components. In this paper, we consider an objective function which minimizes total stoppage time and total idle time and it is presented sequence dependent set up time. Many studies have been done on the mixed model assembly lines. But in this paper we specifically focused on reducing the idle times. This is possible through various help policies. For improving the solutions, some cases developed and about 40 tests problem was considered. We use scatter search for optimization and for showing the efficiency of our algorithm, experimental results shows behavior of method. Scatter search and help policies can produce high quality answers, so it has been used in this paper.

Tablet Computer as a User Interface: Intelligent Solutions for Multifunctional Hardcopy Devices

Tablet computers and Multifunctional Hardcopy Devices (MHDs) are common devices in daily life. Though, many scientific studies have not been published. The tablet computers are straightforward to use whereas the MHDs are comparatively difficult to use. Thus, to assist different levels of users, we propose combining these two devices to achieve straightforward intelligent user interface (UI) and versatile What You See Is What You Get (WYSIWYG) document management and production. Our approach to this issue is to design an intelligent user dependent UI for a MHD applying a tablet computer. Furthermore, we propose hardware interconnection and versatile intelligent software between these two devices. In this study, we first provide a state-of-the-art survey on MHDs and tablet computers, and their interconnections. Secondly we provide a comparative UI survey on two state-of-the-art MHDs with a proposal of a novel UI for the MHDs using Jakob Nielsen-s Ten Usability Heuristics Evaluation.

Churn Prediction: Does Technology Matter?

The aim of this paper is to identify the most suitable model for churn prediction based on three different techniques. The paper identifies the variables that affect churn in reverence of customer complaints data and provides a comparative analysis of neural networks, regression trees and regression in their capabilities of predicting customer churn.

The Relationship of Building Information Modeling (BIM) Capability in Quantity Surveying Practice and Project Performance

The adoption of building information modeling (BIM) is increasing in the construction industry. However, quantity surveyors are slow in adoption compared to other professions due to lack of awareness of the BIM’s potential in their profession. It is still unclear on how BIM application can enhance quantity surveyors’ work performance and project performance. The aim of this research is to identify the capabilities of BIM in quantity surveying practices and examine the relationship between BIM capabilities and project performance. Questionnaire survey and interviews were adopted for data collection. Literature reviews identified there are eleven BIM capabilities in quantity surveying practice. Questionnaire results showed that there are several BIM capabilities significantly correlated with project performance in time, cost and quality aspects and the results were validated through interviews. These findings show that BIM has the capabilities to enhance quantity surveyors’ performances and subsequently improved project performance.

Decision Maturity Framework: Introducing Maturity In Heuristic Search

Heuristics-based search methodologies normally work on searching a problem space of possible solutions toward finding a “satisfactory" solution based on “hints" estimated from the problem-specific knowledge. Research communities use different types of methodologies. Unfortunately, most of the times, these hints are immature and can lead toward hindering these methodologies by a premature convergence. This is due to a decrease of diversity in search space that leads to a total implosion and ultimately fitness stagnation of the population. In this paper, a novel Decision Maturity framework (DMF) is introduced as a solution to this problem. The framework simply improves the decision on the direction of the search by materializing hints enough before using them. Ideas from this framework are injected into the particle swarm optimization methodology. Results were obtained under both static and dynamic environment. The results show that decision maturity prevents premature converges to a high degree.

Numerical Modeling of Natural Convection on Various Configuration of Rectangular Fin Arrays on Vertical Base Plates

In this research, the laminar heat transfer of natural convection on vertical surfaces has been investigated. Most of the studies on natural convection have been considered constantly whereas velocity and temperature domain, do not change with time, transient one are used a lot. Governing equations are solved using a finite volume approach. The convective terms are discretized using the power-law scheme, whereas for diffusive terms the central difference is employed. Coupling between the velocity and pressure is made with SIMPLE algorithm. The resultant system of discretized linear algebraic equations is solved with an alternating direction implicit scheme. Then a configuration of rectangular fins is put in different ways on the surface and heat transfer of natural convection on these surfaces without sliding is studied and finally optimization is done.

A Conservative Multi-block Algorithm for Two-dimensional Numerical Model

A multi-block algorithm and its implementation in two-dimensional finite element numerical model CCHE2D are presented. In addition to a conventional Lagrangian Interpolation Method (LIM), a novel interpolation method, called Consistent Interpolation Method (CIM), is proposed for more accurate information transfer across the interfaces. The consistent interpolation solves the governing equations over the auxiliary elements constructed around the interpolation nodes using the same numerical scheme used for the internal computational nodes. With the CIM, the momentum conservation can be maintained as well as the mass conservation. An imbalance correction scheme is used to enforce the conservation laws (mass and momentum) across the interfaces. Comparisons of the LIM and the CIM are made using several flow simulation examples. It is shown that the proposed CIM is physically more accurate and produces satisfactory results efficiently.