Regulation of Transfer of 137cs by Polymeric Sorbents for Grow Ecologically Sound Biomass

Soil contamination with radiocesium has a long-term radiological impact due to its long physical half-life (30.1 years for 137Cs and 2 years for 134Cs) and its high biological availability. 137Cs causes the largest concerns because of its deleterious effect on agriculture and stock farming, and, thus, human life for decades. One of the important aspects of the problem of contaminated soils remediation is understand of protective actions aimed at the reduction of biological migration of radionuclides in soil-plant system. The most effective way to bind radionuclides is the use of selective sorbents. The proposed research mainly aims to achieve control on transfer of 137Cs in a system growing media – plant due to counter ions variation in the polymeric sorbents. As research object Japanese basil - Perilla frutescens was chosen. Productivity of plants depending on the presence (control-without presence of polymer) and type of polymer material, as well as content of 137Cs in plant material has been determined. The character of different polymers influences on the 137Cs migration in growing media – plant system as well as accumulation in the plants has been cleared up.

Diversity Analysis of a Quinoa (Chenopodium quinoa Willd.) Germplasm during Two Seasons

The present work has been carried out to evaluate the diversity of a collection of 78 quinoa accessions developed through recurrent selection from Andean germplasm introduced to Morocco in the winter of 2000. Twenty-three quantitative and qualitative characters were used for the evaluation of genetic diversity and the relationship between the accessions, and also for the establishment of a core collection in Morocco. Important variation was found among the accessions in terms of plant morphology and growth behavior. Data analysis showed positive correlation of the plant height, the plant fresh and the dry weight with the grain yield, while days to flowering was found to be negatively correlated with grain yield. The first four PCs contributed 74.76% of the variability; the first PC showed significant variation with 42.86% of the total variation, PC2 with 15.37%, PC3 with 9.05% and PC4 contributed 7.49% of the total variation. Plant size, days to grain filling and days to maturity are correlated to the PC1; and seed size, inflorescence density and mildew resistance are correlated to the PC2. Hierarchical cluster analysis rearranged the 78 quinoa accessions into four main groups and ten sub-clusters. Clustering was found in associations with days to maturity and also with plant size and seed-size traits.

Another Structure of Weakly Left C-wrpp Semigroups

It is known that a left C-wrpp semigroup can be described as curler structure of a left band and a C-wrpp semigroup. In this paper, we introduce the class of weakly left C-wrpp semigroups which includes the class of weakly left C-rpp semigroups as a subclass. We shall particularly show that the spined product of a left C-wrpp semigroup and a right normal band is a weakly left C-wrpp semifroup. Some equivalent characterizations of weakly left C-wrpp semigroups are obtained. Our results extend that of left C-wrpp semigroups.

Best Co-approximation and Best Simultaneous Co-approximation in Fuzzy Normed Spaces

The main purpose of this paper is to consider the t-best co-approximation and t-best simultaneous co-approximation in fuzzy normed spaces. We develop the theory of t-best co-approximation and t-best simultaneous co-approximation in quotient spaces. This new concept is employed us to improve various characterisations of t-co-proximinal and t-co-Chebyshev sets.

Industrial Production and Clinical Application of L-Asparaginase: A Chemotherapeutic Agent

This article comprises detail information about L-asparaginase, encompassing topic such as various sources of L-asparaginase, mechanism and properties of L-asparaginase. Also describe the production, cultivation and purification of L-asparaginase along with information about the application of L-asparaginase. L-asparaginase catalyzes the conversion reaction to convert asparagine to aspartic acid and ammonia. Asparagine is a nutritional requirement for both normal and tumor cell. Present scenario has found that L-asparaginase has been found to be a best anti tumor or antileukemic agent. In the recent years this enzyme gained application in the field of clinical research pharmacologic and food industry. It has been characterized based on the enzyme assay principle hydrolyzing L-asparagine into L-aspartic acid and ammonia. It has been observed that eukaryotic microorganisms such as yeast and filamentous fungi have a potential for L-asparaginase production. L-asparaginase has been and is still one of the most lengthily studied therapeutic enzymes by scientist and researchers worldwide.

Morphological Characteristics and Pollination Requirement in Red Pitaya (Hylocereus spp.)

This study explored the morphological characteristics and effects of pollination methods on fruit set and characteristics in 4 red pitaya (Hylocereus spp.) clones. The distinctive morphological recognition and classification among pitaya clones were confirmed by the stem, flower and fruit features. The fruit production season was indicated from the beginning of May to the end of August – the beginning of September with 6-7 flowering cycles per year. The floral stage took from 15-19 days and fruit duration spent 30–32 days. VN White, fully self-compatible, obtained high fruit set rates (80.0–90.5%) in all pollination treatments and the maximum fruit weight (402.6g) in hand self- and (403.4g) in open-pollination. Chaozhou 5 was partially self-compatible while Orejona and F11 were completely self-incompatible. Hand cross-pollination increased significantly fruit set (95.8; 88.4 and 90.2%) and fruit weight (374.2; 281.8 and 416.3g) in Chaozhou 5, Orejona and F11, respectively. TSS contents were not much influcenced by pollination methods.

TiO2/Clay Minerals (Palygorskite/Halloysite) Nanocomposite Coatings for Water Disinfection

Microfibrous palygorskite and tubular halloysite clay mineral combined with nanocrystalline TiO2 are incorporating in the preparation of nanocomposite films on glass substrates via sol-gel route at 450oC. The synthesis is employing nonionic surfactant molecule as pore directing agent along with acetic acid-based sol-gel route without addition of water molecules. Drying and thermal treatment of composite films ensure elimination of organic material lead to the formation of TiO2 nanoparticles homogeneously distributed on the palygorskite or halloysite surfaces. Nanocomposite films without cracks of active anatase crystal phase on palygorskite and halloysite surfaces are characterized by microscopy techniques, UV-Vis spectroscopy, and porosimetry methods in order to examine their structural properties. The composite palygorskite-TiO2 and halloysite-TiO2 films with variable quantities of palygorskite and halloysite were tested as photocatalysts in the photo-oxidation of Basic Blue 41 azo dye in water. These nanocomposite films proved to be most promising photocatalysts and highly effective to dye’s decoloration in spite of small amount of palygorskite-TiO2 or halloysite-TiO2 catalyst immobilized onto glass substrates mainly due to the high surface area and uniform distribution of TiO2 on clay minerals avoiding aggregation.

Radionuclides Transport Phenomena in Vadose Zone

Radioactive waste management is fundamental to safeguard population and environment by radiological risks. Environmental assessment of a site, where nuclear activities are located, allows understanding the hydro geological system and the radionuclides transport in groundwater and subsoil. Use of dedicated software is the basis of transport phenomena investigation and for dynamic scenarios prediction; this permits to understand the evolution of accidental contamination events, but at the same time the potentiality of the software itself can be verified. The aim of this paper is to perform a numerical analysis by means of HYDRUS 1D code, so as to evaluate radionuclides transport in a nuclear site in Piedmont region (Italy). In particular, the behavior in vadose zone was investigated. An iterative assessment process was performed for risk assessment of radioactive contamination. The analysis therein developed considers the following aspects: i) hydro geological site characterization; ii) individuation of the main intrinsic and external site factors influencing water flow and radionuclides transport phenomena; iii) software potential for radionuclides leakage simulation purposes.

Isolation and Characterization of Collagen from Chicken Feet

Collagen was isolated from chicken feet by using papain and pepsin enzymes in acetic acid solution at 4°C for 24h with a yield of 18.16% and 22.94% by dry weight, respectively. Chemical composition and characteristics of chicken feet collagen such as amino acid composition, SDS-PAGE patterns, FTIR spectra and thermal properties were evaluated. The chicken feet collagen is rich in the amino acids glycine, glutamic acid, proline and hydroxyproline. Electrophoresis pattern demonstrated two distinct α-chains (α1 and α2) and β chain, indicating that type I collagen is a major component of chicken feet collagen. The thermal stability of collagen isolated by papain and pepsin revealed stable denaturation temperatures of 48.40 and 53.35°C, respectively. The FTIR spectra of both collagens were similar with amide regions in A, B, I, II and III. The study demonstrated that chicken feet collagen using papain isolation method is possible as commercial alternative ingredient. 

Hydraulic Studies on Core Components of PFBR

Detailed thermal hydraulic investigations are very  essential for safe and reliable functioning of liquid metal cooled fast  breeder reactors. These investigations are further more important for  components with complex profile, since there is no direct correlation  available in literature to evaluate the hydraulic characteristics of such  components directly. In those cases available correlations for similar  profile or geometries may lead to significant uncertainty in the  outcome. Hence experimental approach can be adopted to evaluate  these hydraulic characteristics more precisely for better prediction in  reactor core components.  Prototype Fast Breeder Reactor (PFBR), a sodium cooled pool  type reactor is under advanced stage of construction at Kalpakkam,  India. Several components of this reactor core require hydraulic  investigation before its usage in the reactor. These hydraulic  investigations on full scale models, carried out by experimental  approaches using water as simulant fluid are discussed in the paper. 

On the Catalytic Combustion Behaviors of CH4 in a MCFC Power Generation System

Catalytic combustion is generally accepted as an environmentally preferred alternative for the generation of heat and power from fossil fuels mainly due to its advantages related to the stable combustion under very lean conditions with low emissions of NOx, CO, and UHC at temperatures lower than those occurred in conventional flame combustion. Despite these advantages, the commercial application of catalytic combustion has been delayed because of complicated reaction processes and the difficulty in developing appropriate catalysts with the required stability and durability. To develop the catalytic combustors, detailed studies on the combustion characteristics of catalytic combustion should be conducted. To the end, in current research, quantitative studies on the combustion characteristics of the catalytic combustors, with a Pd-based catalyst for MCFC power generation systems, relying on numerical simulations have been conducted. In addition, data from experimental studies of variations in outlet temperatures and fuel conversion, taken after operating conditions have been used to validate the present numerical approach. After introducing the governing equations for mass, momentum, and energy equations as well as a description of catalytic combustion kinetics, the effects of the excess air ratio, space velocity, and inlet gas temperature on the catalytic combustion characteristics are extensively investigated. Quantitative comparisons are also conducted with previous experimental data. Finally, some concluding remarks are presented.

Extraction of Polystyrene from Styrofoam Waste: Synthesis of Novel Chelating Resin for the Enrichment and Speciation of Cr(III)/Cr(VI) Ions in Industrial Effluents

Polystyrene (PS) was extracted from Styrofoam (expanded polystyrene foam) waste, so called white pollutant. The PS was functionalized with N,N- Bis(2-aminobenzylidene)benzene-1,2-diamine (ABA) ligand through an azo spacer. The resin was characterized by FT-IR spectroscopy and elemental analysis. The PS-N=N-ABA resin was used for the enrichment and speciation of Cr(III)/Cr(VI) ions and total Cr determination in aqueous samples by flame atomic absorption spectrometry (FAAS). The separation of Cr(III)/Cr(VI) ions was achieved at pH 2. The recovery of Cr(VI) ions was achieved ≥ 95.0% at optimum parameters: pH 2; resin amount 300mg; flow rates 2.0mL min-1 of solution and 2.0mL min-1 of eluent (2.0mol L-1 HNO3). Total Cr was determined by oxidation of Cr(III) to Cr(VI) ions using H2O2. The limit of detection (LOD) and quantification (LOQ) of Cr(VI) were found to be 0.40 and 1.20μg L-1, respectively with preconcentration factor of 250. Total saturation and breakthrough capacitates of the resin for Cr(IV) ions were found to be 0.181 and 0.531mmol g-1, respectively. The proposed method was successfully applied for the preconcentration/speciation of Cr(III)/Cr(VI) ions and determination of total Cr in industrial effluents.

Comparative Study on Status and Development of Transient Flow Analysis Including Simple Surge Tank

This paper presents the problem of modeling and simulating of transient phenomena in conveying pipeline systems based on the rigid column and full elastic methods. Transient analysis is important and one of the more challenging and complicated flow problem in the design and the operation of water pipeline systems. Transient can produce large pressure forces and rapid fluid acceleration into a water pipeline system, these disturbances may result in device failures, system fatigue or pipe ruptures, and even the dirty water intrusion. Several methods have been introduced and used to analyze transient flow, an accurate analysis and suitable protection devices should be used to protect water pipeline systems. The fourth-order Runge-Kutta method has been used to solve the dynamic and continuity equations in the rigid column method, while the characteristics method used to solve these equations in the full elastic method. The results obtained provide that the model is an efficient tool for flow transient analysis and provide approximately identical results by using these two methods. Moreover; using the simple surge tank ”open surge tank” reduces the unfavorable effects of transients.

Broadcasting Mechanism with Less Flooding Packets by Optimally Constructing Forwarding and Non-Forwarding Nodes in Mobile Ad Hoc Networks

The conventional routing protocol designed for MANET fail to handle dynamic movement and self-starting behavior of the node effectively. Every node in MANET is considered as forward as well receiver node and all of them participate in routing the packet from source to the destination. While the interconnection topology is highly dynamic, the performance of the most of the routing protocol is not encouraging. In this paper, a reliable broadcast approach for MANET is proposed for improving the transmission rate. The MANET is considered with asymmetric characteristics and the properties of the source and destination nodes are different. The non-forwarding node list is generated with a downstream node and they do not participate in the routing. While the forwarding and non-forwarding node is constructed in a conventional way, the number of nodes in non-forwarding list is more and increases the load. In this work, we construct the forwarding and non-forwarding node optimally so that the flooding and broadcasting is reduced to certain extent. The forwarded packet is considered as acknowledgements and the non-forwarding nodes explicitly send the acknowledgements to the source. The performance of the proposed approach is evaluated in NS2 environment. Since the proposed approach reduces the flooding, we have considered functionality of the proposed approach with AODV variants. The effect of network density on the overhead and collision rate is considered for performance evaluation. The performance is compared with the AODV variants found that the proposed approach outperforms all the variants.

Innovative Pictogram Chinese Characters Representation

This paper proposes an innovative approach to represent the Pictogram Chinese Characters. The advantage of this representation is using an extraordinary representation to represent the pictogram Chinese character. This extraordinary representation is created accordingly to the original pictogram Chinese characters revolution or transition. The purpose of this innovative creation is to assist the learner to learn Chinese as second language (CSL) in Chinese language learning, specifically on memorizing Chinese characters. Commonly, the CSL will give up and frustrate easily while memorizing the Chinese characters by rote. So, our innovative representation helps on memorizing the Chinese character by visual storytelling. This innovative representation enhances the Chinese language learning experience of the CSL.

Approach of Measuring System Analyses for Automotive Part Manufacturing

This work aims to introduce an efficient and to standardize the measuring system analyses for automotive industrial. The study started by literature reviewing about the management and analyses measurement system. The approach of measuring system management, then, was constructed. Such approach was validated by collecting the current measuring system data using the equipments of interest including vernier caliper and micrometer. Their accuracy and precision of measurements were analyzed. Finally, the measuring system was improved and evaluated. The study showed that vernier did not meet its measuring characteristics based on the linearity whereas all equipments were lacking of the measuring precision characteristics. Consequently, the causes of measuring variation via the equipments of interest were declared. After the improvement, it was found that their measuring performance could be accepted as the standard required. Finally, the standardized approach for analyzing the measuring system of automotive was concluded.

Monitoring of Water Pollution and Its Consequences: An Overview

Water a vital component for all living forms is derived from variety of sources, including surface water (rivers, lakes, reservoirs and ponds) and ground water (aquifers). Over the years of time, water bodies are subjected to human interference regularly resulting in deterioration of water quality. Therefore, pollution of water bodies has become matter of global concern. As the water quality closely relate to human health, water analysis before usage is of immense importance. Improper management of water bodies can cause serious problems in availability and quality of water. The quality of water may be described according to their physico-chemical and microbiological characteristics. For effective maintenance of water quality through appropriate control measures, continuous monitoring of metals, physico-chemical and biological parameter is essential for the establishment of baseline data for the water quality in any study area. The present study has focused on to explore the status of water pollution in various areas and to estimate the magnitude of its toxicity using different bioassay.

Growth and Characterization of L-Asparagine (LAS) Crystal Admixture of Paranitrophenol (PNP): A NLO Material

L-asparagine admixture Paranitrophenol (LAPNP) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 12mm×5 mm×3mm have been obtained in 15 days. The grown crystals were Brown color and transparent. The solubility of the grown samples has been found out at various temperatures. The lattice parameters of the grown crystals were determined by X-ray diffraction technique. The reflection planes of the sample were confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. Fourier transform infrared (FTIR) studies were used to confirm the presence of various functional groups in the crystals. UV–visible absorption spectrum was recorded to study the optical transparency of grown crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz–Perry powder technique and a study of its second harmonic generation efficiency in comparison with potassium dihydrogen phosphate (KDP) has been made. The mechanical strength of the crystal was estimated by Vickers hardness test. The grown crystals were subjected to thermo gravimetric and differential thermal analysis (TG/DTA). The dielectric behavior of the sample was also studied

Factors Contributing Towards Technology Development in Small Firms

The importance of MSMEs in India became crucial in rural areas because it promoted economic growth. MSMEs play a significant role in the economic growth of the country owing to production, exports and employment. Technology development reflect a critical way in which organization respond to either technological or market challenges. The present survey examines the characteristics of technology development in MSMEs. The results show that Indian MSMEs do not co-operate with universities and R&D institutes. Government policies also affect the technology development activities. The awareness about the R&D infrastructure is very low as shown by the results in the study. There is a need to understand and assess the real needs of the MSMEs and accordingly devise approaches that ensure their sustainable growth.

Identification of Coauthors in Scientific Database

The analysis of scientific collaboration networks has contributed significantly to improving the understanding of how does the process of collaboration between researchers and also to understand how the evolution of scientific production of researchers or research groups occurs. However, the identification of collaborations in large scientific databases is not a trivial task given the high computational cost of the methods commonly used. This paper proposes a method for identifying collaboration in large data base of curriculum researchers. The proposed method has low computational cost with satisfactory results, proving to be an interesting alternative for the modeling and characterization of large scientific collaboration networks.