Stability Analysis of Impulsive BAM Fuzzy Cellular Neural Networks with Distributed Delays and Reaction-diffusion Terms

In this paper, a class of impulsive BAM fuzzy cellular neural networks with distributed delays and reaction-diffusion terms is formulated and investigated. By employing the delay differential inequality and inequality technique developed by Xu et al., some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive BAM fuzzy cellular neural networks with distributed delays and reaction-diffusion terms are obtained. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters, diffusion effect and impulsive disturbed intention. It is believed that these results are significant and useful for the design and applications of BAM fuzzy cellular neural networks. An example is given to show the effectiveness of the results obtained here.

Implementation of Response Surface Methodology using in Small Brown Rice Peeling Machine: Part I

Implementation of response surface methodology (RSM) was employed to study the effects of two factor (rubber clearance and round per minute) in brown rice peeling machine of The optimal BROKENS yield (19.02, average of three repeats),.The optimized composition derived from RSM regression was analyzed using Regression analysis and Analysis of Variance (ANOVA). At a significant level α = 0.05, the values of Regression coefficient, R 2 (adj)were 97.35 % and standard deviation were 1.09513. The independent variables are initial rubber clearance, and round per minute parameters namely. The investigating responses are final rubber clearance, and round per minute (RPM). The restriction of the optimization is the designated.

An Augmented Automatic Choosing Control with Constrained Input Using Weighted Gradient Optimization Automatic Choosing Functions

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) for nonlinear systems with constrained input using weighted gradient optimization automatic choosing functions. Constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Bangla Vowel Characterization Based on Analysis by Synthesis

Bangla Vowel characterization determines the spectral properties of Bangla vowels for efficient synthesis as well as recognition of Bangla vowels. In this paper, Bangla vowels in isolated word have been analyzed based on speech production model within the framework of Analysis-by-Synthesis. This has led to the extraction of spectral parameters for the production model in order to produce different Bangla vowel sounds. The real and synthetic spectra are compared and a weighted square error has been computed along with the error in the formant bandwidths for efficient representation of Bangla vowels. The extracted features produced good representation of targeted Bangla vowel. Such a representation also plays essential role in low bit rate speech coding and vocoders.

Finite Volume Model to Study the Effect of Buffer on Cytosolic Ca2+ Advection Diffusion

Calcium [Ca2+] is an important second messenger which plays an important role in signal transduction. There are several parameters that affect its concentration profile like buffer source etc. The effect of stationary immobile buffer on Ca2+ concentration has been incorporated which is a very important parameter needed to be taken into account in order to make the model more realistic. Interdependence of all the important parameters like diffusion coefficient and influx over [Ca2+] profile has been studied. Model is developed in the form of advection diffusion equation together with buffer concentration. A program has been developed using finite volume method for the entire problem and simulated on an AMD-Turion 32-bit machine to compute the numerical results.

Estimating Saturated Hydraulic Conductivity from Soil Physical Properties using Neural Networks Model

Saturated hydraulic conductivity is one of the soil hydraulic properties which is widely used in environmental studies especially subsurface ground water. Since, its direct measurement is time consuming and therefore costly, indirect methods such as pedotransfer functions have been developed based on multiple linear regression equations and neural networks model in order to estimate saturated hydraulic conductivity from readily available soil properties e.g. sand, silt, and clay contents, bulk density, and organic matter. The objective of this study was to develop neural networks (NNs) model to estimate saturated hydraulic conductivity from available parameters such as sand and clay contents, bulk density, van Genuchten retention model parameters (i.e. r θ , α , and n) as well as effective porosity. We used two methods to calculate effective porosity: : (1) eff s FC φ =θ -θ , and (2) inf φ =θ -θ eff s , in which s θ is saturated water content, FC θ is water content retained at -33 kPa matric potential, and inf θ is water content at the inflection point. Total of 311 soil samples from the UNSODA database was divided into three groups as 187 for the training, 62 for the validation (to avoid over training), and 62 for the test of NNs model. A commercial neural network toolbox of MATLAB software with a multi-layer perceptron model and back propagation algorithm were used for the training procedure. The statistical parameters such as correlation coefficient (R2), and mean square error (MSE) were also used to evaluate the developed NNs model. The best number of neurons in the middle layer of NNs model for methods (1) and (2) were calculated 44 and 6, respectively. The R2 and MSE values of the test phase were determined for method (1), 0.94 and 0.0016, and for method (2), 0.98 and 0.00065, respectively, which shows that method (2) estimates saturated hydraulic conductivity better than method (1).

An Artificial Neural Network Model for Earthquake Prediction and Relations between Environmental Parameters and Earthquakes

Earthquakes are natural phenomena that occur with influence of a lot of parameters such as seismic activity, changing in the ground waters' motion, changing in the water-s temperature, etc. On the other hand, the radon gas concentrations in soil vary as nonlinear generally with earthquakes. Continuous measurement of the soil radon gas is very important for determination of characteristic of the seismic activity. The radon gas changes as continuous with strain occurring within the Earth-s surface during an earthquake and effects from the physical and the chemical processes such as soil structure, soil permeability, soil temperature, the barometric pressure, etc. Therefore, at the modeling researches are notsufficient to knowthe concentration ofradon gas. In this research, we determined relationships between radon emissions based on the environmental parameters and earthquakes occurring along the East Anatolian Fault Zone (EAFZ), Turkiye and predicted magnitudes of some earthquakes with the artificial neural network (ANN) model.

Life Table and Reproductive Table Parameters of Scolothrips Longicornis (Thysanoptera: Thripidae) as a Predator of Two-Spotted Spider Mite, Tetranychus Turkestani (Acari: Tetranychidae)

Scolothrips longicornis Priesner is one of the important predators of tetranychid mites with a wide distribution throughout Iran. Life table and population growth parameters of S. longicornis feeding on two-spotted spider mite, Tetranychus turkestani Ugarov & Nikolski were investigated under laboratory condition (26±1ºC, 65±5% R.H. and 16L: 8D). To carry of these experiments, S. longicornis collections reared on cowpea infested with T. turkestani were prepared. The eggs with less than 24 hours old were selected and reared. The emerged larvae feeding directly on cowpea leaf discs which were infested with T. turkestani. Thirty females of S. longicornis with 24 hours age were selected and released on infested leaf discs. They replaced daily to a new leaf disc and the laying eggs have counted. The experiment continued till the last thrips had died. The result showed that the mean age mortality of the adult female thrips were between 21-25 days which is nearly equal life expectancy (ex) at the time of adult eclosion. Parameters related to reproductive table including gross reproductive rate, net reproductive rate, intrinsic rate of natural increase and finite rate of increase were 48.91, 37.63, 0.26 and 2.3, respectively. Mean age per female/day, mean fertile egg per female/day, gross hatch rate, mean net age fertility, mean net age fecundity, net fertility rate and net fecundity rate were 2.23, 1.76, 0.87, 13.87, 14.26, 69.1 and 78.5, respectively. Sex ratio of offspring also recorded daily. The highest sex ratio for females was 0.88 in first day of oviposition. The sex ratio decreased gradually and reached under 0.46 after the day 26 and the oviposition rate declined. Then it seems that maintenance of rearing culture of predatory thrips for mass rearing later than 26 days after egg-laying commence is not profitable.

Double Layer Polarization and Non-Linear Electroosmosis in and around a Charged Permeable Aggregate

We have studied the migration of a charged permeable aggregate in electrolyte under the influence of an axial electric field and pressure gradient. The migration of the positively charged aggregate leads to a deformation of the anionic cloud around it. The hydrodynamics of the aggregate is governed by the interaction of electroosmotic flow in and around the particle, hydrodynamic friction and electric force experienced by the aggregate. We have computed the non-linear Nernest-Planck equations coupled with the Dracy- Brinkman extended Navier-Stokes equations and Poisson equation for electric field through a finite volume method. The permeability of the aggregate enable the counterion penetration. The penetration of counterions depends on the volume charge density of the aggregate and ionic concentration of electrolytes at a fixed field strength. The retardation effect due to the double layer polarization increases the drag force compared to an uncharged aggregate. Increase in migration sped from the electrophretic velocity of the aggregate produces further asymmetry in charge cloud and reduces the electric body force exerted on the particle. The permeability of the particle have relatively little influence on the electric body force when Double layer is relatively thin. The impact of the key parameters of electrokinetics on the hydrodynamics of the aggregate is analyzed.

A Self Supervised Bi-directional Neural Network (BDSONN) Architecture for Object Extraction Guided by Beta Activation Function and Adaptive Fuzzy Context Sensitive Thresholding

A multilayer self organizing neural neural network (MLSONN) architecture for binary object extraction, guided by a beta activation function and characterized by backpropagation of errors estimated from the linear indices of fuzziness of the network output states, is discussed. Since the MLSONN architecture is designed to operate in a single point fixed/uniform thresholding scenario, it does not take into cognizance the heterogeneity of image information in the extraction process. The performance of the MLSONN architecture with representative values of the threshold parameters of the beta activation function employed is also studied. A three layer bidirectional self organizing neural network (BDSONN) architecture comprising fully connected neurons, for the extraction of objects from a noisy background and capable of incorporating the underlying image context heterogeneity through variable and adaptive thresholding, is proposed in this article. The input layer of the network architecture represents the fuzzy membership information of the image scene to be extracted. The second layer (the intermediate layer) and the final layer (the output layer) of the network architecture deal with the self supervised object extraction task by bi-directional propagation of the network states. Each layer except the output layer is connected to the next layer following a neighborhood based topology. The output layer neurons are in turn, connected to the intermediate layer following similar topology, thus forming a counter-propagating architecture with the intermediate layer. The novelty of the proposed architecture is that the assignment/updating of the inter-layer connection weights are done using the relative fuzzy membership values at the constituent neurons in the different network layers. Another interesting feature of the network lies in the fact that the processing capabilities of the intermediate and the output layer neurons are guided by a beta activation function, which uses image context sensitive adaptive thresholding arising out of the fuzzy cardinality estimates of the different network neighborhood fuzzy subsets, rather than resorting to fixed and single point thresholding. An application of the proposed architecture for object extraction is demonstrated using a synthetic and a real life image. The extraction efficiency of the proposed network architecture is evaluated by a proposed system transfer index characteristic of the network.

A Content Based Image Watermarking Scheme Resilient to Geometric Attacks

Multimedia security is an incredibly significant area of concern. The paper aims to discuss a robust image watermarking scheme, which can withstand geometric attacks. The source image is initially moment normalized in order to make it withstand geometric attacks. The moment normalized image is wavelet transformed. The first level wavelet transformed image is segmented into blocks if size 8x8. The product of mean and standard and standard deviation of each block is computed. The second level wavelet transformed image is divided into 8x8 blocks. The product of block mean and the standard deviation are computed. The difference between products in the two levels forms the watermark. The watermark is inserted by modulating the coefficients of the mid frequencies. The modulated image is inverse wavelet transformed and inverse moment normalized to generate the watermarked image. The watermarked image is now ready for transmission. The proposed scheme can be used to validate identification cards and financial instruments. The performance of this scheme has been evaluated using a set of parameters. Experimental results show the effectiveness of this scheme.

Evaluation of Stent Performances using FEA considering a Realistic Balloon Expansion

A number of previous studies were rarely considered the effects of transient non-uniform balloon expansion on evaluation of the properties and behaviors of stents during stent expansion, nor did they determine parameters to maximize the performances driven by mechanical characteristics. Therefore, in order to fully understand the mechanical characteristics and behaviors of stent, it is necessary to consider a realistic modeling of transient non-uniform balloon-stent expansion. The aim of the study is to propose design parameters capable of improving the ability of vascular stent through a comparative study of seven commercial stents using finite element analyses of a realistic transient non-uniform balloon-stent expansion process. In this study, seven representative commercialized stents were evaluated by finite element (FE) analysis in terms of the criteria based on the itemized list of Food and Drug Administration (FDA) and European Standards (prEN). The results indicate that using stents composed of opened unit cells connected by bend-shaped link structures and controlling the geometrical and morphological features of the unit cell strut or the link structure at the distal ends of stent may improve mechanical characteristics of stent. This study provides a better method at the realistic transient non-uniform balloon-stent expansion by investigating the characteristics, behaviors, and parameters capable of improving the ability of vascular stent.

Effects of Catalyst Tubes Characteristics on a Steam Reforming Process in Ammonia

The tubes in an Ammonia primary reformer furnace operate close to the limits of materials technology in terms of the stress induced as a result of very high temperatures, combined with large differential pressures across the tube wall. Operation at tube wall temperatures significantly above design can result in a rapid increase in the number of tube failures, since tube life is very sensitive to the absolute operating temperature of the tube. Clearly it is important to measure tube wall temperatures accurately in order to prevent premature tube failure by overheating.. In the present study, the catalyst tubes in an Ammonia primary reformer has been modeled taking into consideration heat, mass and momentum transfer as well as reformer characteristics.. The investigations concern the effects of tube characteristics and superficial tube wall temperatures on of the percentage of heat flux, unconverted methane and production of Hydrogen for various values of steam to carbon ratios. The results show the impact of catalyst tubes length and diameters on the performance of operating parameters in ammonia primary reformers.

Fatigue Properties and Strength Degradation of Carbon Fibber Reinforced Composites

A two-parameter fatigue model explicitly accounting for the cyclic as well as the mean stress was used to fit static and fatigue data available in literature concerning carbon fiber reinforced composite laminates subjected tension-tension fatigue. The model confirms the strength–life equal rank assumption and predicts reasonably the probability of failure under cyclic loading. The model parameters were found by best fitting procedures and required a minimum of experimental tests.

Application of Neural Network and Finite Element for Prediction the Limiting Drawing Ratio in Deep Drawing Process

In this paper back-propagation artificial neural network (BPANN) is employed to predict the limiting drawing ratio (LDR) of the deep drawing process. To prepare a training set for BPANN, some finite element simulations were carried out. die and punch radius, die arc radius, friction coefficient, thickness, yield strength of sheet and strain hardening exponent were used as the input data and the LDR as the specified output used in the training of neural network. As a result of the specified parameters, the program will be able to estimate the LDR for any new given condition. Comparing FEM and BPANN results, an acceptable correlation was found.

Cross Layer Optimization for Fairness Balancing Based on Adaptively Weighted Utility Functions in OFDMA Systems

Cross layer optimization based on utility functions has been recently studied extensively, meanwhile, numerous types of utility functions have been examined in the corresponding literature. However, a major drawback is that most utility functions take a fixed mathematical form or are based on simple combining, which can not fully exploit available information. In this paper, we formulate a framework of cross layer optimization based on Adaptively Weighted Utility Functions (AWUF) for fairness balancing in OFDMA networks. Under this framework, a two-step allocation algorithm is provided as a sub-optimal solution, whose control parameters can be updated in real-time to accommodate instantaneous QoS constrains. The simulation results show that the proposed algorithm achieves high throughput while balancing the fairness among multiple users.

ISC–Intelligent Subspace Clustering, A Density Based Clustering Approach for High Dimensional Dataset

Many real-world data sets consist of a very high dimensional feature space. Most clustering techniques use the distance or similarity between objects as a measure to build clusters. But in high dimensional spaces, distances between points become relatively uniform. In such cases, density based approaches may give better results. Subspace Clustering algorithms automatically identify lower dimensional subspaces of the higher dimensional feature space in which clusters exist. In this paper, we propose a new clustering algorithm, ISC – Intelligent Subspace Clustering, which tries to overcome three major limitations of the existing state-of-art techniques. ISC determines the input parameter such as є – distance at various levels of Subspace Clustering which helps in finding meaningful clusters. The uniform parameters approach is not suitable for different kind of databases. ISC implements dynamic and adaptive determination of Meaningful clustering parameters based on hierarchical filtering approach. Third and most important feature of ISC is the ability of incremental learning and dynamic inclusion and exclusions of subspaces which lead to better cluster formation.

Modeling and Simulation of a Serial Production Line with Constant Work-In-Process

This paper presents a model for an unreliable production line, which is operated according to demand with constant work-in-process (CONWIP). A simulation model is developed based on the discrete model and several case problems are analyzed using the model. The model is utilized to optimize storage space capacities at intermediate stages and the number of kanbans at the last stage, which is used to trigger the production at the first stage. Furthermore, effects of several line parameters on production rate are analyzed using design of experiments.

Identification of PIP Aquaporin Genes from Wheat

There is strong evidence that water channel proteins 'aquaporins (AQPs)' are central components in plant-water relations as well as a number of other physiological parameters. We had previously reported the isolation of 24 plasma membrane intrinsic protein (PIP) type AQPs. However, the gene numbers in rice and the polyploid nature of bread wheat indicated a high probability of further genes in the latter. The present work focused on identification of further AQP isoforms in bread wheat. With the use of altered primer design, we identified five genes homologous, designated PIP1;5b, PIP2;9b, TaPIP2;2, TaPIP2;2a, TaPIP2;2b. Sequence alignments indicate PIP1;5b, PIP2;9b are likely to be homeologues of two previously reported genes while the other three are new genes and could be homeologs of each other. The results indicate further AQP diversity in wheat and the sequence data will enable physical mapping of these genes to identify their genomes as well as genetic to determine their association with any quantitative trait loci (QTLs) associated with plant-water relation such as salinity or drought tolerance.

Optimal Capacitor Allocation for loss reduction in Distribution System Using Fuzzy and Plant Growth Simulation Algorithm

This paper presents a new and efficient approach for capacitor placement in radial distribution systems that determine the optimal locations and size of capacitor with an objective of improving the voltage profile and reduction of power loss. The solution methodology has two parts: in part one the loss sensitivity factors are used to select the candidate locations for the capacitor placement and in part two a new algorithm that employs Plant growth Simulation Algorithm (PGSA) is used to estimate the optimal size of capacitors at the optimal buses determined in part one. The main advantage of the proposed method is that it does not require any external control parameters. The other advantage is that it handles the objective function and the constraints separately, avoiding the trouble to determine the barrier factors. The proposed method is applied to 9 and 34 bus radial distribution systems. The solutions obtained by the proposed method are compared with other methods. The proposed method has outperformed the other methods in terms of the quality of solution.