The Applicability of the Zipper Strut to Seismic Rehabilitation of Steel Structures

Chevron frames (Inverted-V-braced frames or Vbraced frames) have seismic disadvantages, such as not good exhibit force redistribution capability and compression brace buckles immediately. Researchers developed new design provisions on increasing both the ductility and lateral resistance of these structures in seismic areas. One of these new methods is adding zipper columns, as proposed by Khatib et al. (1988) [2]. Zipper columns are vertical members connecting the intersection points of the braces above the first floor. In this paper applicability of the suspended zipper system to Seismic Rehabilitation of Steel Structures is investigated. The models are 3-, 6-, 9-, and 12-story Inverted-V-braced frames. In this case, it is assumed that the structures must be rehabilitated. For rehabilitation of structures, zipper column is used. The result of researches showed that the suspended zipper system is effective in case of 3-, 6-, and 9-story Inverted-V-braced frames and it would increase lateral resistance of structure up to life safety level. But in case of high-rise buildings (such as 12 story frame), it doesn-t show good performance. For solving this problem, the braced bay can consist of small “units" over the height of the entire structure, which each of them is a zipper-braced bay with a few stories. By using this method the lateral resistance of 12 story Inverted-V-braced frames is increased up to safety life level.

MABENA Strategic Management Model for Local Companies

MABENA model is a complementary model in comparison with traditional models such as HCMS, CMS and etc. New factors, which have effects on preparation of strategic plans and their sequential order in MABENA model is the platform of presented road map in this paper.Study review shows, factors such as emerging new critical success factors for strategic planning, improvement of international strategic models, increasing the maturity of companies and emerging new needs leading to design a new model which can be responsible for new critical factors and solve the limitations of previous strategic management models. Preparation of strategic planning need more factors than introduced in traditional models. The needed factors includes determining future Critical Success Factors and competencies, defining key processes, determining the maturity of the processes, considering all aspects of the external environment etc. Description of aforementioned requirements, the outcomes and their order is developing and presenting the MABENA model-s road map in this paper. This study presents a road map for strategic planning of the Iranian organizations.

Extending the Conceptual Neighborhood Graph of the Relations for the Semantic Adaptation of Multimedia Documents

The recent developments in computing and communication technology permit to users to access multimedia documents with variety of devices (PCs, PDAs, mobile phones...) having heterogeneous capabilities. This diversification of supports has trained the need to adapt multimedia documents according to their execution contexts. A semantic framework for multimedia document adaptation based on the conceptual neighborhood graphs was proposed. In this framework, adapting consists on finding another specification that satisfies the target constraints and which is as close as possible from the initial document. In this paper, we propose a new way of building the conceptual neighborhood graphs to best preserve the proximity between the adapted and the original documents and to deal with more elaborated relations models by integrating the relations relaxation graphs that permit to handle the delays and the distances defined within the relations.

Investigating the Impact of Wind Speed on Active and Reactive Power Penetration to the Distribution Network

Wind power is among the most actively developing distributed generation (DG) technology. Majority of the wind power based DG technologies employ wind turbine induction generators (WTIG) instead of synchronous generators, for the technical advantages like: reduced size, increased robustness, lower cost, and increased electromechanical damping. However, dynamic changes of wind speed make the amount of active/reactive power injected/drawn to a WTIG embedded distribution network highly variable. This paper analyzes the effect of wind speed changes on the active and reactive power penetration to the wind energy embedded distribution network. Four types of wind speed changes namely; constant, linear change, gust change and random change of wind speed are considered in the analysis. The study is carried out by three-phase, non-linear, dynamic simulation of distribution system component models. Results obtained from the investigation are presented and discussed.

Seismic Analysis of a S-Curved Viaduct using Stick and Finite Element Models

Stick models are widely used in studying the behaviour of straight as well as skew bridges and viaducts subjected to earthquakes while carrying out preliminary studies. The application of such models to highly curved bridges continues to pose challenging problems. A viaduct proposed in the foothills of the Himalayas in Northern India is chosen for the study. It is having 8 simply supported spans @ 30 m c/c. It is doubly curved in horizontal plane with 20 m radius. It is inclined in vertical plane as well. The superstructure consists of a box section. Three models have been used: a conventional stick model, an improved stick model and a 3D finite element model. The improved stick model is employed by making use of body constraints in order to study its capabilities. The first 8 frequencies are about 9.71% away in the latter two models. Later the difference increases to 80% in 50th mode. The viaduct was subjected to all three components of the El Centro earthquake of May 1940. The numerical integration was carried out using the Hilber- Hughes-Taylor method as implemented in SAP2000. Axial forces and moments in the bridge piers as well as lateral displacements at the bearing levels are compared for the three models. The maximum difference in the axial forces and bending moments and displacements vary by 25% between the improved and finite element model. Whereas, the maximum difference in the axial forces, moments, and displacements in various sections vary by 35% between the improved stick model and equivalent straight stick model. The difference for torsional moment was as high as 75%. It is concluded that the stick model with body constraints to model the bearings and expansion joints is not desirable in very sharp S curved viaducts even for preliminary analysis. This model can be used only to determine first 10 frequency and mode shapes but not for member forces. A 3D finite element analysis must be carried out for meaningful results.

The Usage of Social Networks in Educational Context

Possible advantages of technology in educational context required the defining boundaries of formal and informal learning. Increasing opportunity to ubiquitous learning by technological support has revealed a question of how to discover the potential of individuals in the spontaneous environments such as social networks. This seems to be related with the question of what purposes in social networks have been being used? Social networks provide various advantages in educational context as collaboration, knowledge sharing, common interests, active participation and reflective thinking. As a consequence of these, the purpose of this study is composed of proposing a new model that could determine factors which effect adoption of social network applications for usage in educational context. While developing a model proposal, the existing adoption and diffusion models have been reviewed and they are thought to be suitable on handling an original perspective instead of using completely other diffusion or acceptance models because of different natures of education from other organizations. In the proposed model; social factors, perceived ease of use, perceived usefulness and innovativeness are determined four direct constructs that effect adoption process. Facilitating conditions, image, subjective norms and community identity are incorporated to model as antecedents of these direct four constructs.

Retail Inventory Management for Perishable Products with Two Bins Strategy

Perishable goods constitute a large portion of retailer inventory and lose value with time due to deterioration and/or obsolescence. Retailers dealing with such goods required considering the factors of short shelf life and the dependency of sales on inventory displayed in determining optimal procurement policy. Many retailers follow the practice of using two bins - primary bin sales fresh items at a list price and secondary bin sales unsold items at a discount price transferred from primary bin on attaining certain age. In this paper, mathematical models are developed for primary bin and for secondary bin that maximizes profit with decision variables of order quantities, optimal review period and optimal selling price at secondary bin. The demand rates in two bins are assumed to be deterministic and dependent on displayed inventory level, price and age but independent of each other. The validity of the model is shown by solving an example and the sensitivity analysis of the model is also reported.

A New Vector Quantization Front-End Process for Discrete HMM Speech Recognition System

The paper presents a complete discrete statistical framework, based on a novel vector quantization (VQ) front-end process. This new VQ approach performs an optimal distribution of VQ codebook components on HMM states. This technique that we named the distributed vector quantization (DVQ) of hidden Markov models, succeeds in unifying acoustic micro-structure and phonetic macro-structure, when the estimation of HMM parameters is performed. The DVQ technique is implemented through two variants. The first variant uses the K-means algorithm (K-means- DVQ) to optimize the VQ, while the second variant exploits the benefits of the classification behavior of neural networks (NN-DVQ) for the same purpose. The proposed variants are compared with the HMM-based baseline system by experiments of specific Arabic consonants recognition. The results show that the distributed vector quantization technique increase the performance of the discrete HMM system.

Analysis of Testing and Operational Software Reliability in SRGM based on NHPP

Software Reliability is one of the key factors in the software development process. Software Reliability is estimated using reliability models based on Non Homogenous Poisson Process. In most of the literature the Software Reliability is predicted only in testing phase. So it leads to wrong decision-making concept. In this paper, two Software Reliability concepts, testing and operational phase are studied in detail. Using S-Shaped Software Reliability Growth Model (SRGM) and Exponential SRGM, the testing and operational reliability values are obtained. Finally two reliability values are compared and optimal release time is investigated.

A Cooperative Multi-Robot Control Using Ad Hoc Wireless Network

In this paper, a Cooperative Multi-robot for Carrying Targets (CMCT) algorithm is proposed. The multi-robot team consists of three robots, one is a supervisor and the others are workers for carrying boxes in a store of 100×100 m2. Each robot has a self recharging mechanism. The CMCT minimizes robot-s worked time for carrying many boxes during day by working in parallel. That is, the supervisor detects the required variables in the same time another robots work with previous variables. It works with straightforward mechanical models by using simple cosine laws. It detects the robot-s shortest path for reaching the target position avoiding obstacles by using a proposed CMCT path planning (CMCT-PP) algorithm. It prevents the collision between robots during moving. The robots interact in an ad hoc wireless network. Simulation results show that the proposed system that consists of CMCT algorithm and its accomplished CMCT-PP algorithm achieves a high improvement in time and distance while performing the required tasks over the already existed algorithms.

Feature Selection for Breast Cancer Diagnosis: A Case-Based Wrapper Approach

This article addresses feature selection for breast cancer diagnosis. The present process contains a wrapper approach based on Genetic Algorithm (GA) and case-based reasoning (CBR). GA is used for searching the problem space to find all of the possible subsets of features and CBR is employed to estimate the evaluation result of each subset. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer (WDBC) dataset.

Finite Element Prediction of Hip Fracture during a Sideways Fall

Finite element method was applied to model damage development in the femoral neck during a sideways fall. The femoral failure was simulated using the maximum principal strain criterion. The evolution of damage was consistent with previous studies. It was initiated by compressive failure at the junction of the superior aspect of the femoral neck and the greater trochanter. It was followed by tensile failure that occurred at the inferior aspect of the femoral neck before a complete transcervical fracture was observed. The estimated failure line was less than 50° from the horizontal plane (Pauwels type II).

Mathematical Modeling Experimental Approach of the Friction on the Tool-Chip Interface of Multicoated Carbide Turning Inserts

The importance of machining process in today-s industry requires the establishment of more practical approaches to clearly represent the intimate and severe contact on the tool-chipworkpiece interfaces. Mathematical models are developed using the measured force signals to relate each of the tool-chip friction components on the rake face to the operating cutting parameters in rough turning operation using multilayers coated carbide inserts. Nonlinear modeling proved to have high capability to detect the nonlinear functional variability embedded in the experimental data. While feedrate is found to be the most influential parameter on the friction coefficient and its related force components, both cutting speed and depth of cut are found to have slight influence. Greater deformed chip thickness is found to lower the value of friction coefficient as the sliding length on the tool-chip interface is reduced.

In Silico Analysis of Pax6 Interacting Proteins Indicates Missing Molecular Links in Development of Brain and Associated Disease

The PAX6, a transcription factor, is essential for the morphogenesis of the eyes, brain, pituitary and pancreatic islets. In rodents, the loss of Pax6 function leads to central nervous system defects, anophthalmia, and nasal hypoplasia. The haplo-insufficiency of Pax6 causes microphthalmia, aggression and other behavioral abnormalities. It is also required in brain patterning and neuronal plasticity. In human, heterozygous mutation of Pax6 causes loss of iris [aniridia], mental retardation and glucose intolerance. The 3- deletion in Pax6 leads to autism and aniridia. The phenotypes are variable in peneterance and expressivity. However, mechanism of function and interaction of PAX6 with other proteins during development and associated disease are not clear. It is intended to explore interactors of PAX6 to elucidated biology of PAX6 function in the tissues where it is expressed and also in the central regulatory pathway. This report describes In-silico approaches to explore interacting proteins of PAX6. The models show several possible proteins interacting with PAX6 like MITF, SIX3, SOX2, SOX3, IPO13, TRIM, and OGT. Since the Pax6 is a critical transcriptional regulator and master control gene of eye and brain development it might be interacting with other protein involved in morphogenesis [TGIF, TGF, Ras etc]. It is also presumed that matricelluar proteins [SPARC, thrombospondin-1 and osteonectin etc] are likely to interact during transport and processing of PAX6 and are somewhere its cascade. The proteins involved in cell survival and cell proliferation can also not be ignored.

Exit Strategies from The Global Crisis

While the form of crises may change, their essence remains the same (such as a cycle of abundant liquidity, rapid credit growth, and a low-inflation environment followed by an asset-price bubble). The current market turbulence began in mid-2000s when the US economy shifted to imbalanced both internal and external macroeconomic positions. We see two key causes of these problems – loose US monetary policy in early 2000s and US government guarantees issued on the securities by government-sponsored enterprises what was further fueled by financial innovations such as structured credit products. We have discovered both negative and positive lessons deriving from this crisis and divided the negative lessons into three groups: financial products and valuation, processes and business models, and strategic issues. Moreover, we address key risk management lessons and exit strategies derived from the current crisis and recommend policies that should help diminish the negative impact of future potential crises.

Convection through Light Weight Timber Constructions with Mineral Wool

The major part of light weight timber constructions consists of insulation. Mineral wool is the most commonly used insulation due to its cost efficiency and easy handling. The fiber orientation and porosity of this insulation material enables flowthrough. The air flow resistance is low. If leakage occurs in the insulated bay section, the convective flow may cause energy losses and infiltration of the exterior wall with moisture and particles. In particular the infiltrated moisture may lead to thermal bridges and growth of health endangering mould and mildew. In order to prevent this problem, different numerical calculation models have been developed. All models developed so far have a potential for completion. The implementation of the flow-through properties of mineral wool insulation may help to improve the existing models. Assuming that the real pressure difference between interior and exterior surface is larger than the prescribed pressure difference in the standard test procedure for mineral wool ISO 9053 / EN 29053, measurements were performed using the measurement setup for research on convective moisture transfer “MSRCMT". These measurements show, that structural inhomogeneities of mineral wool effect the permeability only at higher pressure differences, as applied in MSRCMT. Additional microscopic investigations show, that the location of a leak within the construction has a crucial influence on the air flow-through and the infiltration rate. The results clearly indicate that the empirical values for the acoustic resistance of mineral wool should not be used for the calculation of convective transfer mechanisms.

The Tyrosinase and Cyclooxygenase Inhibitory Activities and Cytotoxicity Screening of Tamarindus indica Seeds

The methanolic extracts from seeds of tamarind (Tamarindus indica) was prepared by Soxhlet apparatus extraction and evaluated for total phenolic content by Folin-Ciocalteu method. Then, methanolic extract was screened biological activities (In vitro) for anti-melanogenic activity by tyrosinase inhibition test, antiinflammation activity by cyclooxygenase 1 (COX-1) and cyclooxygenase 2 (COX-2) inhibition test, and cytotoxic screening test with Vero cells. The results showed that total phenolic content, which contained in extract, was contained 27.72 mg of gallic acid equivalent per g of dry weight. The ability to inhibit tyrosinase enzyme, which exerted by Tamarind seed extracts (1 mg/ml) was 52.13 ± 0.42 %. The extract was not possessed inhibitory effect to COX-1 and COX-2 enzymes and cytotoxic effect to Vero cells. The finding is concludes that tested seed extract was possessed antimelanogenic activity with non-toxic effects. However, there was not exhibited anti-inflammatory activity. Further studies include the use of advance biological models to confirm this biological activity, as well as, the isolation and characterization of the purified compounds that it was contained.

A Novel Method for Behavior Modeling in Uncertain Information Systems

None of the processing models in the software development has explained the software systems performance evaluation and modeling; likewise, there exist uncertainty in the information systems because of the natural essence of requirements, and this may cause other challenges in the processing of software development. By definition an extended version of UML (Fuzzy- UML), the functional requirements of the software defined uncertainly would be supported. In this study, the behavioral description of uncertain information systems by the aid of fuzzy-state diagram is crucial; moreover, the introduction of behavioral diagrams role in F-UML is investigated in software performance modeling process. To get the aim, a fuzzy sub-profile is used.

Stability Optimization of Functionally Graded Pipes Conveying Fluid

This paper presents an exact analytical model for optimizing stability of thin-walled, composite, functionally graded pipes conveying fluid. The critical flow velocity at which divergence occurs is maximized for a specified total structural mass in order to ensure the economic feasibility of the attained optimum designs. The composition of the material of construction is optimized by defining the spatial distribution of volume fractions of the material constituents using piecewise variations along the pipe length. The major aim is to tailor the material distribution in the axial direction so as to avoid the occurrence of divergence instability without the penalty of increasing structural mass. Three types of boundary conditions have been examined; namely, Hinged-Hinged, Clamped- Hinged and Clamped-Clamped pipelines. The resulting optimization problem has been formulated as a nonlinear mathematical programming problem solved by invoking the MatLab optimization toolbox routines, which implement constrained function minimization routine named “fmincon" interacting with the associated eigenvalue problem routines. In fact, the proposed mathematical models have succeeded in maximizing the critical flow velocity without mass penalty and producing efficient and economic designs having enhanced stability characteristics as compared with the baseline designs.

Application of GM (1, 1) Model Group Based on Recursive Solution in China's Energy Demand Forecasting

To learn about China-s future energy demand, this paper first proposed GM(1,1) model group based on recursive solutions of parameters estimation, setting up a general solving-algorithm of the model group. This method avoided the problems occurred on the past researches that remodeling, loss of information and large amount of calculation. This paper established respectively all-data-GM(1,1), metabolic GM(1,1) and new information GM (1,1)model according to the historical data of energy consumption in China in the year 2005-2010 and the added data of 2011, then modeling, simulating and comparison of accuracies we got the optimal models and to predict. Results showed that the total energy demand of China will be 37.2221 billion tons of equivalent coal in 2012 and 39.7973 billion tons of equivalent coal in 2013, which are as the same as the overall planning of energy demand in The 12th Five-Year Plan.