Internet Governance based on Multiple-Stakeholders: Opportunities, Issues and Developments

The Internet is the global data communications infrastructure based on the interconnection of both public and private networks using protocols that implement Internetworking on a global scale. Hence the control of protocol and infrastructure development, resource allocation and network operation are crucial and interlinked aspects. Internet Governance is the hotly debated and contentious subject that refers to the global control and operation of key Internet infrastructure such as domain name servers and resources such as domain names. It is impossible to separate technical and political positions as they are interlinked. Furthermore the existence of a global market, transparency and competition impact upon Internet Governance and related topics such as network neutrality and security. Current trends and developments regarding Internet governance with a focus on the policy-making process, security and control have been observed to evaluate current and future implications on the Internet. The multi stakeholder approach to Internet Governance discussed in this paper presents a number of opportunities, issues and developments that will affect the future direction of the Internet. Internet operation, maintenance and advisory organisations such as the Internet Corporation for Assigned Names and Numbers (ICANN) or the Internet Governance Forum (IGF) are currently in the process of formulating policies for future Internet Governance. Given the controversial nature of the issues at stake and the current lack of agreement it is predicted that institutional as well as market governance will remain present for the network access and content.

On-line and Off-line POD Assisted Projective Integral for Non-linear Problems: A Case Study with Burgers-Equation

The POD-assisted projective integration method based on the equation-free framework is presented in this paper. The method is essentially based on the slow manifold governing of given system. We have applied two variants which are the “on-line" and “off-line" methods for solving the one-dimensional viscous Bergers- equation. For the on-line method, we have computed the slow manifold by extracting the POD modes and used them on-the-fly along the projective integration process without assuming knowledge of the underlying slow manifold. In contrast, the underlying slow manifold must be computed prior to the projective integration process for the off-line method. The projective step is performed by the forward Euler method. Numerical experiments show that for the case of nonperiodic system, the on-line method is more efficient than the off-line method. Besides, the online approach is more realistic when apply the POD-assisted projective integration method to solve any systems. The critical value of the projective time step which directly limits the efficiency of both methods is also shown.

Improvement of MLLR Speaker Adaptation Using a Novel Method

This paper presents a technical speaker adaptation method called WMLLR, which is based on maximum likelihood linear regression (MLLR). In MLLR, a linear regression-based transform which adapted the HMM mean vectors was calculated to maximize the likelihood of adaptation data. In this paper, the prior knowledge of the initial model is adequately incorporated into the adaptation. A series of speaker adaptation experiments are carried out at a 30 famous city names database to investigate the efficiency of the proposed method. Experimental results show that the WMLLR method outperforms the conventional MLLR method, especially when only few utterances from a new speaker are available for adaptation.

The Upconversion of co-doped Nd3+/Er3+Tellurite Glass

Series of tellurite glass of the system 78TeO2-10PbO- 10Li2O-(2-x)Nd2O3-xEr2O3, where x = 0.5, 1.0, 1.5 and 2.0 was successfully been made. A study of upconversion luminescence of the Nd3+/Er3+ co-doped tellurite glass has been carried out. From Judd-Ofelt analysis, the experimental lifetime, exp. τ of the glass serie are found higher in the visible region as they varies from 65.17ms to 114.63ms, whereas in the near infrared region (NIR) the lifetime are varies from 2.133ms to 2.270ms. Meanwhile, the emission cross section,σ results are found varies from 0.004 x 1020 cm2 to 1.007 x 1020 cm2 with respect to composition. The emission spectra of the glass are found been contributed from Nd3+ and Er3+ ions by which nine significant transition peaks are observed. The upconversion mechanism of the co-doped tellurite glass has been shown in the schematic energy diagrams. In this works, it is found that the excited state-absorption (ESA) is still dominant in the upconversion excitation process as the upconversion excitation mechanism of the Nd3+ excited-state levels is accomplished through a stepwise multiphonon process. An efficient excitation energy transfer (ET) has been observed between Nd3+ as a donor and Er3+ as the acceptor. As a result, respective emission spectra had been observed.

Bridging the Communication Gap at NASA - A Case Study in Communities of Practice

Following the loss of NASA's Space Shuttle Columbia in 2003, it was determined that problems in the agency's organization created an environment that led to the accident. One component of the proposed solution resulted in the formation of the NASA Engineering Network (NEN), a suite of information retrieval and knowledge-sharing tools. This paper describes the implementation of communities of practice, which are formed along engineering disciplines. Communities of practice enable engineers to leverage their knowledge and best practices to collaborate and take information learning back to their jobs and embed it into the procedures of the agency. This case study offers insight into using traditional engineering disciplines for virtual collaboration, including lessons learned during the creation and establishment of NASA-s communities.

Comparison of Neural Network and Logistic Regression Methods to Predict Xerostomia after Radiotherapy

To evaluate the ability to predict xerostomia after radiotherapy, we constructed and compared neural network and logistic regression models. In this study, 61 patients who completed a questionnaire about their quality of life (QoL) before and after a full course of radiation therapy were included. Based on this questionnaire, some statistical data about the condition of the patients’ salivary glands were obtained, and these subjects were included as the inputs of the neural network and logistic regression models in order to predict the probability of xerostomia. Seven variables were then selected from the statistical data according to Cramer’s V and point-biserial correlation values and were trained by each model to obtain the respective outputs which were 0.88 and 0.89 for AUC, 9.20 and 7.65 for SSE, and 13.7% and 19.0% for MAPE, respectively. These parameters demonstrate that both neural network and logistic regression methods are effective for predicting conditions of parotid glands.

Tobephobia: Teachers- Ineptitude to Manage Curriculum Change

In this paper, Tobephobia (TBP) alludes to the fear of failure experienced by teachers to manage curriculum change. TBP is an emerging concept and it extends the boundaries of research in terms of how we view achievement and failure in education. Outcomes-based education (OBE) was introduced fifteen years ago in South African schools without simultaneously upgrading teachers- professional competencies. This exploratory research, therefore examines a simple question: What is the impact of TBP and OBE on teachers? Teacher ineptitude to cope with the OBE curriculum in the classroom is a serious problem affecting large numbers of South African teachers. This exploratory study sought to determine the perceived negative impact of OBE and TBP on teachers. A survey was conducted amongst 311 teachers in Port Elizabeth and Durban, South Africa. The results confirm the very negative impact of TBP and OBE on teachers. This exploratory study authenticates the existence of TBP.

Beneficial Use of Coal Combustion By-products in the Rehabilitation of Failed Asphalt Pavements

This study demonstrates the use of Class F fly ash in combination with lime or lime kiln dust in the full depth reclamation (FDR) of asphalt pavements. FDR, in the context of this paper, is a process of pulverizing a predetermined amount of flexible pavement that is structurally deficient, blending it with chemical additives and water, and compacting it in place to construct a new stabilized base course. Test sections of two structurally deficient asphalt pavements were reclaimed using Class F fly ash in combination with lime and lime kiln dust. In addition, control sections were constructed using cement, cement and emulsion, lime kiln dust and emulsion, and mill and fill. The service performance and structural behavior of the FDR pavement test sections were monitored to determine how the fly ash sections compared to other more traditional pavement rehabilitation techniques. Service performance and structural behavior were determined with the use of sensors embedded in the road and Falling Weight Deflectometer (FWD) tests. Monitoring results of the FWD tests conducted up to 2 years after reclamation show that the cement, fly ash+LKD, and fly ash+lime sections exhibited two year resilient modulus values comparable to open graded cement stabilized aggregates (more than 750 ksi). The cement treatment resulted in a significant increase in resilient modulus within 3 weeks of construction and beyond this curing time, the stiffness increase was slow. On the other hand, the fly ash+LKD and fly ash+lime test sections indicated slower shorter-term increase in stiffness. The fly ash+LKD and fly ash+lime section average resilient modulus values at two years after construction were in excess of 800 ksi. Additional longer-term testing data will be available from ongoing pavement performance and environmental condition data collection at the two pavement sites.

Intelligent Video-Based Monitoring of Freeway Traffic

Freeways are originally designed to provide high mobility to road users. However, the increase in population and vehicle numbers has led to increasing congestions around the world. Daily recurrent congestion substantially reduces the freeway capacity when it is most needed. Building new highways and expanding the existing ones is an expensive solution and impractical in many situations. Intelligent and vision-based techniques can, however, be efficient tools in monitoring highways and increasing the capacity of the existing infrastructures. The crucial step for highway monitoring is vehicle detection. In this paper, we propose one of such techniques. The approach is based on artificial neural networks (ANN) for vehicles detection and counting. The detection process uses the freeway video images and starts by automatically extracting the image background from the successive video frames. Once the background is identified, subsequent frames are used to detect moving objects through image subtraction. The result is segmented using Sobel operator for edge detection. The ANN is, then, used in the detection and counting phase. Applying this technique to the busiest freeway in Riyadh (King Fahd Road) achieved higher than 98% detection accuracy despite the light intensity changes, the occlusion situations, and shadows.

Vermicomposting of Waste Corn Pulp Blended with Cow Dung Manure using Eisenia Fetida

Waste corn pulp was investigated as a potential feedstock during vermicomposting using Eisenia fetida. Corn pulp is the major staple food in Southern Africa and constitutes about 25% of the total organic waste. Wastecooked corn pulp was blended with cow dung in the ratio 6:1 respectively to optimize the vermicomposting process. The feedstock was allowed to vermicompost for 30 days. The vermicomposting took place in a 3- tray plastic worm bin. Moisture content, temperature, pH, and electrical conductivity were monitoreddaily. The NPK content was determined at day 30. During vermicomposting, moisture content increased from 27.68% to 52.41%, temperature ranged between 19- 25◦C, pH increased from 5.5 to 7.7, and electrical conductivity decreased from 80000μS/cm to 60000μS/cm. The ash content increased from 11.40% to 28.15%; additionally the volatile matter increased from 1.45% to 10.02%. An odorless, dark brown vermicompost was obtained. The vermicompost NPK content was 4.19%, 1.15%, and 6.18% respectively.

Reducing Cognitive Load in Learning Computer Programming

Many difficulties are faced in the process of learning computer programming. This paper will propose a system framework intended to reduce cognitive load in learning programming. In first section focus is given on the process of learning and the shortcomings of the current approaches to learning programming. Finally the proposed prototype is suggested along with the justification of the prototype. In the proposed prototype the concept map is used as visualization metaphor. Concept maps are similar to the mental schema in long term memory and hence it can reduce cognitive load well. In addition other method such as part code method is also proposed in this framework to can reduce cognitive load.

Gene Selection Guided by Feature Interdependence

Cancers could normally be marked by a number of differentially expressed genes which show enormous potential as biomarkers for a certain disease. Recent years, cancer classification based on the investigation of gene expression profiles derived by high-throughput microarrays has widely been used. The selection of discriminative genes is, therefore, an essential preprocess step in carcinogenesis studies. In this paper, we have proposed a novel gene selector using information-theoretic measures for biological discovery. This multivariate filter is a four-stage framework through the analyses of feature relevance, feature interdependence, feature redundancy-dependence and subset rankings, and having been examined on the colon cancer data set. Our experimental result show that the proposed method outperformed other information theorem based filters in all aspect of classification errors and classification performance.

TiO2-Zeolite Y Catalyst Prepared Using Impregnation and Ion-Exchange Method for Sonocatalytic Degradation of Amaranth Dye in Aqueous Solution

Characteristics and sonocatalytic activity of zeolite Y catalysts loaded with TiO2 using impregnation and ion exchange methods for the degradation of amaranth dye were investigated. The Ion-exchange method was used to encapsulate the TiO2 into the internal pores of the zeolite while the incorporation of TiO2 mostly on the external surface of zeolite was carried out using the impregnation method. Different characterization techniques were used to elucidate the physicochemical properties of the produced catalysts. The framework of zeolite Y remained virtually unchanged after the encapsulation of TiO2 while the crystallinity of zeolite decreased significantly after the incorporation of 15 wt% of TiO2. The sonocatalytic activity was enhanced by TiO2 incorporation with maximum degradation efficiencies of 50% and 68% for the encapsulated titanium and titanium loaded onto the zeolite, respectively after 120min of reaction. Catalysts characteristics and sonocatalytic behaviors were significantly affected by the preparation method and the location of TiO2 introduced with zeolite structure. Behaviors in the sonocatalytic process were successfully correlated with the characteristics of the catalysts used.

The Effects of the Impact of Instructional Immediacy on Cognition and Learning in Online Classes

Current research has explored the impact of instructional immediacy, defined as those behaviors that help build close relationships or feelings of closeness, both on cognition and motivation in the traditional classroom and online classroom; however, online courses continue to suffer from higher dropout rates. Based on Albert Bandura-s Social Cognitive Theory, four primary relationships or interactions in an online course will be explored in light of how they can provide immediacy thereby reducing student attrition and improving cognitive learning. The four relationships are teacher-student, student-student, and student-content, and studentcomputer. Results of a study conducted with inservice teachers completing a 14-week online professional development technology course will be examined to demonstrate immediacy strategies that improve cognitive learning and reduce student attrition. Results of the study reveal that students can be motivated through various interactions and instructional immediacy behaviors which lead to higher completion rates, improved self-efficacy, and cognitive learning.

Biplot Analysis for Evaluation of Tolerance in Some Bean (Phaseolus vulgaris L.) Genotypes to Bean Common Mosaic Virus (BCMV)

The common bean is the most important grain legume for direct human consumption in the world and BCMV is one of the world's most serious bean diseases that can reduce yield and quality of harvested product. To determine the best tolerance index to BCMV and recognize tolerant genotypes, 2 experiments were conducted in field conditions. Twenty five common bean genotypes were sown in 2 separate RCB design with 3 replications under contamination and non-contamination conditions. On the basis of the results of indices correlations GMP, MP and HARM were determined as the most suitable tolerance indices. The results of principle components analysis indicated 2 first components totally explained 98.52% of variations among data. The first and second components were named potential yield and stress susceptible respectively. Based on the results of BCMV tolerance indices assessment and biplot analysis WA8563-4, WA8563-2 and Cardinal were the genotypes that exhibited potential seed yield under contamination and noncontamination conditions.

Brain Drain of Doctors; Causes and Consequences in Pakistan

Pakistani doctors (MBBS) are emigrating towards developed countries for professional adjustments. This study aims to highlight causes and consequences of doctors- brain drain from Pakistan. Primary data was collected from Mayo Hospital, Lahore by interviewing doctors (n=100) through systematic random sampling technique. It found that various socio-economic and political conditions are working as push and pull factors for brain drain of doctors in Pakistan. Majority of doctors (83%) declared poor remunerations and professional infrastructure of health department as push factor of doctors- brain drain. 81% claimed that continuous instability in political situation and threats of terrorism are responsible for emigration of doctors. 84% respondents considered fewer opportunities of further studies responsible for their emigration. Brain drain of doctors is affecting health sector-s policies / programs, standard doctor-patient ratios and quality of health services badly.

Surface Flattening Assisted with 3D Mannequin Based On Minimum Energy

The topic of surface flattening plays a vital role in the field of computer aided design and manufacture. Surface flattening enables the production of 2D patterns and it can be used in design and manufacturing for developing a 3D surface to a 2D platform, especially in fashion design. This study describes surface flattening based on minimum energy methods according to the property of different fabrics. Firstly, through the geometric feature of a 3D surface, the less transformed area can be flattened on a 2D platform by geodesic. Then, strain energy that has accumulated in mesh can be stably released by an approximate implicit method and revised error function. In some cases, cutting mesh to further release the energy is a common way to fix the situation and enhance the accuracy of the surface flattening, and this makes the obtained 2D pattern naturally generate significant cracks. When this methodology is applied to a 3D mannequin constructed with feature lines, it enhances the level of computer-aided fashion design. Besides, when different fabrics are applied to fashion design, it is necessary to revise the shape of a 2D pattern according to the properties of the fabric. With this model, the outline of 2D patterns can be revised by distributing the strain energy with different results according to different fabric properties. Finally, this research uses some common design cases to illustrate and verify the feasibility of this methodology.

Motivated Support Vector Regression using Structural Prior Knowledge

It-s known that incorporating prior knowledge into support vector regression (SVR) can help to improve the approximation performance. Most of researches are concerned with the incorporation of knowledge in the form of numerical relationships. Little work, however, has been done to incorporate the prior knowledge on the structural relationships among the variables (referred as to Structural Prior Knowledge, SPK). This paper explores the incorporation of SPK in SVR by constructing appropriate admissible support vector kernel (SV kernel) based on the properties of reproducing kernel (R.K). Three-levels specifications of SPK are studied with the corresponding sub-levels of prior knowledge that can be considered for the method. These include Hierarchical SPK (HSPK), Interactional SPK (ISPK) consisting of independence, global and local interaction, Functional SPK (FSPK) composed of exterior-FSPK and interior-FSPK. A convenient tool for describing the SPK, namely Description Matrix of SPK is introduced. Subsequently, a new SVR, namely Motivated Support Vector Regression (MSVR) whose structure is motivated in part by SPK, is proposed. Synthetic examples show that it is possible to incorporate a wide variety of SPK and helpful to improve the approximation performance in complex cases. The benefits of MSVR are finally shown on a real-life military application, Air-toground battle simulation, which shows great potential for MSVR to the complex military applications.

The Effect of Soil Surface Slope on Splash Distribution under Water Drop Impact

The effects of down slope steepness on soil splash distribution under a water drop impact have been investigated in this study. The equipment used are the burette to simulate a water drop, a splash cup filled with sandy soil which forms the source area and a splash board to collect the ejected particles. The results found in this study have shown that the apparent mass increased with increasing downslope angle following a linear regression equation with high coefficient of determination. In the same way, the radial soil splash distribution over the distance has been analyzed statistically, and an exponential function was the best fit of the relationship for the different slope angles. The curves and the regressions equations validate the well known FSDF and extend the theory of Van Dijk.

Solution of Two Dimensional Quasi-Harmonic Equations with CA Approach

Many computational techniques were applied to solution of heat conduction problem. Those techniques were the finite difference (FD), finite element (FE) and recently meshless methods. FE is commonly used in solution of equation of heat conduction problem based on the summation of stiffness matrix of elements and the solution of the final system of equations. Because of summation process of finite element, convergence rate was decreased. Hence in the present paper Cellular Automata (CA) approach is presented for the solution of heat conduction problem. Each cell considered as a fixed point in a regular grid lead to the solution of a system of equations is substituted by discrete systems of equations with small dimensions. Results show that CA can be used for solution of heat conduction problem.