Flight Control of Vectored Thrust Aerial Vehicle by Neural Network Predictive Controller for Enhanced Situational Awareness

This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for vectored thrust aerial vehicle (VTAV). With the SA strategy, we proposed a flight control procedure to address the dynamics variation and performance requirement difference of flight trajectory for an unmanned helicopter model with vectored thrust configuration. This control strategy for chosen model of VTAV has been verified by simulation of take-off and forward maneuvers using software package Simulink and demonstrated good performance for fast stabilization of motors, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.

Improvement in Mechanical Behavior of Expulsion with Heat treated Thermite Welded Rail Steel

Thermite welding is mainly used in world. The reasons why the thermite welding method is widely used are that the equipment has good mobility and total working time of that is shorter than that of the enclosed arc welding method on site. Moreover, the operating skill, which required for thermite welding, is less than that of for enclosed arc welding. In the present research work, heat treatment and combined 'expulsion and heat treatment' techniques were used improve the mechanical properties and weldment structure. The specimens were cut in the transverse direction from expulsion with Heat treated and heat treated Thermite Welded rails. Specimens were prepared according to AWS standard and subjected to tensile test, Impact test and hardness and their results were tabulated. Microstructural analysis was carried out with the help of SEM. Then analyze to effect of heat treated and 'expulsion with heat treated' with the properties of their thermite welded rails. Compare the mechanical and microstructural properties of thermite welded rails between heat expulsion with heat treated and heat treated. Mechanical and microstructural response expulsion with heat treated thermite welded rail is higher value as compared to heat treatment.

Investigation on Pore Water Pressure in Core of Karkheh Dam

Pore water pressure is normally because of consolidation, compaction and water level fluctuation on reservoir. Measuring, controlling and analyzing of pore water pressure have significant importance in both of construction and operation period. Since end of 2002, (dam start up) nature of KARKHEH dam has been analyzed by using the gathered information from instrumentation system of dam. In this lecture dam condition after start up have been analyzed by using the gathered data from located piezometers in core of dam. According to TERZAGHI equation and records of piezometers, consolidation lasted around five years during early years of construction stage, and current pore water pressure in core of dam is caused by water level fluctuation in reservoir. Although there is time lag between water level fluctuation and results of piezometers. These time lags have been checked and the results clearly show that one of the most important causes of it is distance between piezometer and reservoir.

Generation Scheduling Optimization of Multi-Hydroplants: A Case Study

A case study of the generation scheduling optimization of the multi-hydroplants on the Yuan River Basin in China is reported in this paper. Concerning the uncertainty of the inflows, the long/mid-term generation scheduling (LMTGS) problem is solved by a stochastic model in which the inflows are considered as stochastic variables. For the short-term generation scheduling (STGS) problem, a constraint violation priority is defined in case not all constraints are satisfied. Provided the stage-wise separable condition and low dimensions, the hydroplant-based operational region schedules (HBORS) problem is solved by dynamic programming (DP). The coordination of LMTGS and STGS is presented as well. The feasibility and the effectiveness of the models and solution methods are verified by the numerical results.

Efficient Iris Recognition Method for Human Identification

In this paper, an efficient method for personal identification based on the pattern of human iris is proposed. It is composed of image acquisition, image preprocessing to make a flat iris then it is converted into eigeniris and decision is carried out using only reduction of iris in one dimension. By comparing the eigenirises it is determined whether two irises are similar. The results show that proposed method is quite effective.

Intelligent Neural Network Based STLF

Short-Term Load Forecasting (STLF) plays an important role for the economic and secure operation of power systems. In this paper, Continuous Genetic Algorithm (CGA) is employed to evolve the optimum large neural networks structure and connecting weights for one-day ahead electric load forecasting problem. This study describes the process of developing three layer feed-forward large neural networks for load forecasting and then presents a heuristic search algorithm for performing an important task of this process, i.e. optimal networks structure design. The proposed method is applied to STLF of the local utility. Data are clustered due to the differences in their characteristics. Special days are extracted from the normal training sets and handled separately. In this way, a solution is provided for all load types, including working days and weekends and special days. We find good performance for the large neural networks. The proposed methodology gives lower percent errors all the time. Thus, it can be applied to automatically design an optimal load forecaster based on historical data.

Formation and Evaluation of Lahar/HDPE Hybrid Composite as a Structural Material for Household Biogas Digester

This study was an investigation on the suitability of Lahar/HDPE composite as a primary material for low-cost smallscale biogas digesters. While sources of raw materials for biogas are abundant in the Philippines, cost of the technology has made the widespread utilization of this resource an indefinite proposition. Aside from capital economics, another problem arises with space requirements of current digester designs. These problems may be simultaneously addressed by fabricating digesters on a smaller, household scale to reach a wider market, and to use materials that may accommodate optimization of overall design and fabrication cost without sacrificing operational efficiency. This study involved actual fabrication of the Lahar/HDPE composite at varying composition and geometry, subsequent mechanical and thermal characterization, and implementation of Statistical Analysis to find intrinsic relationships between variables. From the results, Lahar/HDPE composite was found to be feasible for use as digester material from both mechanical and economic standpoints. 

Static Voltage Stability Assessment Considering the Power System Contingencies using Continuation Power Flow Method

According to the increasing utilization in power system, the transmission lines and power plants often operate in stability boundary and system probably lose its stable condition by over loading or occurring disturbance. According to the reasons that are mentioned, the prediction and recognition of voltage instability in power system has particular importance and it makes the network security stronger.This paper, by considering of power system contingencies based on the effects of them on Mega Watt Margin (MWM) and maximum loading point is focused in order to analyse the static voltage stability using continuation power flow method. The study has been carried out on IEEE 14-Bus Test System using Matlab and Psat softwares and results are presented.

Robust Stability in Multivariable Neural Network Control using Harmonic Analysis

Robust stability and performance are the two most basic features of feedback control systems. The harmonic balance analysis technique enables to analyze the stability of limit cycles arising from a neural network control based system operating over nonlinear plants. In this work a robust stability analysis based on the harmonic balance is presented and applied to a neural based control of a non-linear binary distillation column with unstructured uncertainty. We develop ways to describe uncertainty in the form of neglected nonlinear dynamics and high harmonics for the plant and controller respectively. Finally, conclusions about the performance of the neural control system are discussed using the Nyquist stability margin together with the structured singular values of the uncertainty as a robustness measure.

Ultra-Wideband Slot Antenna with Notched Band for World Interoperability for Microwave Access

In this paper a novel ultra-wideband (UWB) slot antenna with band notch characteristics for world interoperability for microwave access (WiMAX) is proposed. The designed antenna consists of a rectangular radiating patch and a ground plane with tapered shape slot. To realize a notch band, a curved parasitic element has been etched out along with the radiating patch. It is observed that by adjusting the length, thickness and position of the parasitic element, the proposed antenna can achieved an impedance bandwidth of 8.01GHz (2.84 to 10.85GHz) with a notched band of 3.28-3.85GHz. Compared to the recently reported band notch antennas, the proposed antenna has a simple configuration to realize band notch characteristics in order to mitigate the potential interference between WiMAX and UWB system. Furthermore, a stable radiation pattern and moderate gain except at the notched band makes the proposed antenna suitable for various UWB applications. 

Evaluation of Model and Performance of Fuel Cell Hybrid Electric Vehicle in Different Drive Cycles

In recent years fuel cell vehicles are rapidly appearing all over the globe. In less than 10 years, fuel cell vehicles have gone from mere research novelties to operating prototypes and demonstration models. At the same time, government and industry in development countries have teamed up to invest billions of dollars in partnerships intended to commercialize fuel cell vehicles within the early years of the 21st century. The purpose of this study is evaluation of model and performance of fuel cell hybrid electric vehicle in different drive cycles. A fuel cell system model developed in this work is a semi-experimental model that allows users to use the theory and experimental relationships in a fuel cell system. The model can be used as part of a complex fuel cell vehicle model in advanced vehicle simulator (ADVISOR). This work reveals that the fuel consumption and energy efficiency vary in different drive cycles. Arising acceleration and speed in a drive cycle leads to Fuel consumption increase. In addition, energy losses in drive cycle relates to fuel cell system power request. Parasitic power in different parts of fuel cell system will increase when power request increases. Finally, most of energy losses in drive cycle occur in fuel cell system because of producing a lot of energy by fuel cell stack.

Portable Continuous Aerosol Concentrator for the Determination of NO2 in the Air

The paper deals with the development of portable aerosol concentrator and its application for the determination of nitrites and nitrates. The device enables the continuous trapping of pollutants in the air. An extensive literature search has been elaborated which aims at the development of samplers and the possibilities of their application in the continuous determination of volatile organic compounds. The practical part of the paper is focused on the development of the portable aerosol concentrator. The device using the Aerosol Enrichment Unit has been experimentally verified and subsequently realized. It operates on the principle of equilibrium accumulation of pollutants from the gaseous phase using absorption liquid polydisperse aerosol. The device has been applied for monitoring nitrites and nitrates in the air. The chemiluminescence detector was used for detection; the achieved detection limit for nitrites was 28 ng/m3 and for nitrates 78 ng/m3.

Simulation of Particle Damping under Centrifugal Loads

Particle damping is a technique to reduce the structural vibrations by means of placing small metallic particles inside a cavity that is attached to the structure at location of high vibration amplitudes. In this paper, we have presented an analytical model to simulate the particle damping of two dimensional transient vibrations in structure operating under high centrifugal loads. The simulation results show that this technique remains effective as long as the ratio of the dynamic acceleration of the structure to the applied centrifugal load is more than 0.1. Particle damping increases with the increase of particle to structure mass ratio. However, unlike to the case of particle damping in the absence of centrifugal loads where the damping efficiency strongly depends upon the size of the cavity, here this dependence becomes very weak. Despite the simplicity of the model, the simulation results are considerably in good agreement with the very scarce experimental data available in the literature for particle damping under centrifugal loads.

Reliability Assessment of Bangladesh Power System Using Recursive Algorithm

An electric utility-s main concern is to plan, design, operate and maintain its power supply to provide an acceptable level of reliability to its users. This clearly requires that standards of reliability be specified and used in all three sectors of the power system, i.e., generation, transmission and distribution. That is why reliability of a power system is always a major concern to power system planners. This paper presents the reliability analysis of Bangladesh Power System (BPS). Reliability index, loss of load probability (LOLP) of BPS is evaluated using recursive algorithm and considering no de-rated states of generators. BPS has sixty one generators and a total installed capacity of 5275 MW. The maximum demand of BPS is about 5000 MW. The relevant data of the generators and hourly load profiles are collected from the National Load Dispatch Center (NLDC) of Bangladesh and reliability index 'LOLP' is assessed for the period of last ten years.

Coordination for Synchronous Cooperative Systems Based on Fuzzy Causal Relations

Synchronous cooperative systems (SCS) bring together users that are geographically distributed and connected through a network to carry out a task. Examples of SCS include Tele- Immersion and Tele-Conferences. In SCS, the coordination is the core of the system, and it has been defined as the act of managing interdependencies between activities performed to achieve a goal. Some of the main problems that SCS present deal with the management of constraints between simultaneous activities and the execution ordering of these activities. In order to resolve these problems, orderings based on Lamport-s happened-before relation have been used, namely, causal, Δ-causal, and causal-total orderings. They mainly differ in the degree of asynchronous execution allowed. One of the most important orderings is the causal order, which establishes that the events must be seen in the cause-effect order as they occur in the system. In this paper we show that for certain SCS (e.g. videoconferences, tele-immersion) where some degradation of the system is allowed, ensuring the causal order is still rigid, which can render negative affects to the system. In this paper, we illustrate how a more relaxed ordering, which we call Fuzzy Causal Order (FCO), is useful for such kind of systems by allowing a more asynchronous execution than the causal order. The benefit of the FCO is illustrated by applying it to a particular scenario of intermedia synchronization of an audio-conference system.

A Multiple Inlet Swirler for Gas Turbine Combustors

The central recirculation zone (CRZ) in a swirl stabilized gas turbine combustor has a dominant effect on the fuel air mixing process and flame stability. Most of state of the art swirlers share one disadvantage; the fixed swirl number for the same swirler configuration. Thus, in a mathematical sense, Reynolds number becomes the sole parameter for controlling the flow characteristics inside the combustor. As a result, at low load operation, the generated swirl is more likely to become feeble affecting the flame stabilization and mixing process. This paper introduces a new swirler concept which overcomes the mentioned weakness of the modern configurations. The new swirler introduces air tangentially and axially to the combustor through tangential vanes and an axial vanes respectively. Therefore, it provides different swirl numbers for the same configuration by regulating the ratio between the axial and tangential flow momenta. The swirler aerodynamic performance was investigated using four CFD simulations in order to demonstrate the impact of tangential to axial flow rate ratio on the CRZ. It was found that the length of the CRZ is directly proportional to the tangential to axial air flow rate ratio.

Thermal and Morphological Evaluation of Chemically Pretreated Sugarcane Bagasse

Enzymatic hydrolysis is one of the major steps involved in the conversion from sugarcane bagasse to yield ethanol. This process offers potential for yields and selectivity higher, lower energy costs and milder operating conditions than chemical processes. However, the presence of some factors such as lignin content, crystallinity degree of the cellulose, and particle sizes, limits the digestibility of the cellulose present in the lignocellulosic biomasses. Pretreatment aims to improve the access of the enzyme to the substrate. In this study sugarcane bagasse was submitted chemical pretreatment that consisted of two consecutive steps, the first with dilute sulfuric acid (1 % (v/v) H2SO4), and the second with alkaline solutions with different concentrations of NaOH (1, 2, 3 and 4 % (w/v)). Thermal Analysis (TG/ DTG and DTA) was used to evaluate hemicellulose, cellulose and lignin contents in the samples. Scanning Electron Microscopy (SEM) was used to evaluate the morphological structures of the in natura and chemically treated samples. Results showed that pretreatments were effective in chemical degradation of lignocellulosic materials of the samples, and also was possible to observe the morphological changes occurring in the biomasses after pretreatments.

Efficient Time Synchronization in Wireless Sensor Networks

Energy efficiency is the key requirement in wireless sensor network as sensors are small, cheap and are deployed in very large number in a large geographical area, so there is no question of replacing the batteries of the sensors once deployed. Different ways can be used for efficient energy transmission including Multi-Hop algorithms, collaborative communication, cooperativecommunication, Beam- forming, routing algorithm, phase, frequency and time synchronization. The paper reviews the need for time synchronization and proposed a BFS based synchronization algorithm to achieve energy efficiency. The efficiency of our protocol has been tested and verified by simulation

Location of Vortex Formation Threshold at Suction Inlets near Ground Planes – Ascending and Descending Conditions

Vortices can develop in intakes of turbojet and turbo fan aero engines during high power operation in the vicinity of solid surfaces. These vortices can cause catastrophic damage to the engine. The factors determining the formation of the vortex include both geometric dimensions as well as flow parameters. It was shown that the threshold at which the vortex forms or disappears is also dependent on the initial flow condition (i.e. whether a vortex forms after stabilised non vortex flow or vice-versa). A computational fluid dynamics study was conducted to determine the difference in thresholds between the two conditions. This is the first reported numerical investigation of the “memory effect". The numerical results reproduce the phenomenon reported in previous experimental studies and additional factors, which had not been previously studied, were investigated. They are the rate at which ambient velocity changes and the initial value of ambient velocity. The former was found to cause a shift in the threshold but not the later. It was also found that the varying condition thresholds are not symmetrical about the neutral threshold. The vortex to no vortex threshold lie slightly further away from the neutral threshold compared to the no vortex to vortex threshold. The results suggests that experimental investigation of vortex formation threshold performed either in vortex to no vortex conditions, or vice versa, solely may introduce mis-predictions greater than 10%.

An Improved Genetic Algorithm to Solve the Traveling Salesman Problem

The Genetic Algorithm (GA) is one of the most important methods used to solve many combinatorial optimization problems. Therefore, many researchers have tried to improve the GA by using different methods and operations in order to find the optimal solution within reasonable time. This paper proposes an improved GA (IGA), where the new crossover operation, population reformulates operation, multi mutation operation, partial local optimal mutation operation, and rearrangement operation are used to solve the Traveling Salesman Problem. The proposed IGA was then compared with three GAs, which use different crossover operations and mutations. The results of this comparison show that the IGA can achieve better results for the solutions in a faster time.