Portable Continuous Aerosol Concentrator for the Determination of NO2 in the Air

The paper deals with the development of portable aerosol concentrator and its application for the determination of nitrites and nitrates. The device enables the continuous trapping of pollutants in the air. An extensive literature search has been elaborated which aims at the development of samplers and the possibilities of their application in the continuous determination of volatile organic compounds. The practical part of the paper is focused on the development of the portable aerosol concentrator. The device using the Aerosol Enrichment Unit has been experimentally verified and subsequently realized. It operates on the principle of equilibrium accumulation of pollutants from the gaseous phase using absorption liquid polydisperse aerosol. The device has been applied for monitoring nitrites and nitrates in the air. The chemiluminescence detector was used for detection; the achieved detection limit for nitrites was 28 ng/m3 and for nitrates 78 ng/m3.





References:
[1] Alaa A. Salem, Ahmed A. Soliman, Ismail A. El-Haty, Determination of
nitrogen dioxide, sulfur dioxide, ozone, and ammonia in ambient air
using the passive sampling method associated with ion chromatographic
and potentiometric analyses, Air Qual Atmos Health. September 2009,
2(3): 133-145.
[2] T. Gorecki, J. Namiesnik, Passive sampling. Trends. Analyt Chem, 2002,
21(4), 276-291.
[3] GR. Carmichael et al., Measurements of sulfur dioxide, ozone and
ammonia concentrations in Asia, Africa and South America using
passive samplers. Atmos Environ, 2003, 37:1293-1308.
[4] RM. Cox, The use of passive sampling to monitor forest exposure to O3,
NO2 and SO2: a review and some case studies. Environ Pollut, 2003,
126:301-311.
[5] LPS. Cruz, VP. Campos, AMC. Silva, TM. Tavares, A field evaluation
of a SO2 passive sampler in tropical industrial and urban air. Atmos
Environ, 2004, 38:6425-6429.
[6] J. Namiesnik, B. Zabiegala, A. Kot-Wasik, M. Partyka, A. Wasik,
Passive sampling and/or extraction techniques in environmental
analysis: a review. Anal Bioanal Chem, 2005, 381:279-301.
[7] ED. Palmes, AF. Gunnison, Personal monitoring device for gaseous
contaminants. J Am Ind Hyg Assoc, 1973, 34:78-81.
[8] TTN Lan et al., Atmospheric concentrations of sulfur dioxide, nitrogen
oxides, ammonia, hydrogen chloride, nitric acid, formic and acetic acids
in the south of Vietnam measured by the passive sampling method. Anal
Sci, 2004, 20:213-217.
[9] JD. Ray, Spatial Distribution of tropospheric ozone in national parks of
California: interpretation of passive sampler data. Sci World, 2001,
1:483-497.
[10] NL. Gilbert, S. Woodhouse, DM. Stieb, JR. Brook. Ambient nitrogen
dioxide and distance from a major highway. Sci Total Environ, 2003,
312:43-46. doi:10.1016/S0048-9697(03)00228-6. (PubMed)
[11] S. Mukerjee, LA Smith, GA. Norris, MT. Morandi, M. Gonzaless, CA.
Noble, LM. Neas, AH. Ozkaynak, Field method comparison between
passive air samplers and continuous monitors for VOCs and NO2 in El-
Paso, Texas. J Air Waste Manage Assoc, 2004, 54:307-319.
[12] M. Pandurangappa, N. Balasubranian, Extractive spectrophotometric
determination of trace amounts of nitrogen dioxide, nitrite, and nitrate.
Mikrochim Acta, 1996, 124:137-146. doi:10.1007/BF01244966.
[13] JK. Robinson, MJ. Bollinger, JW. Birks, Luminol/H2O2
chemiluminescence detector for the analysis of nitric oxide in exhaled
breath. Anal Chem, 1999, 71:5131-5136. doi:10.1021/ac990646d.
[PubMed].
[14] P. Mikuska, Z. Vecera, Effect of complexones and tensides on
selectivity of nitrogen dioxide determination in air with a
chemiluminescence aerosol detector. Anal Chim Acta, 2000, 410:159-
165. doi:10.1016/S0003-2670(00)00710-8.
[15] JA. Thornton, PJ Wooldridge, RC. Cohen, Atmospheric NO2: in situ
laser-induced fluorescence detection at parts per trillion mixing ratios.
Anal Chem, 2000, 72:528-539. doi:10.1021/ac9908905. [PubMed].
[16] J. Matsumoto, J. Hirokawa, H. Akimoto, Y. Kajii, Direct measurement
of NO2 in the marine atmosphere by laser induced fluorescence
technique. Atmos Environ, 2001, 35:2803-2814. doi:10.1016/S1352-
2310(01)00078-4.
[17] JS. Do, RY. Shieh, Electrochemical nitrogen dioxide gas sensor based
on solid polymeric electrolyte. Sens Actuators B, 1996, 37:19-26.
doi:10.1016/S0925-4005(97)80068-8.
[18] Y. Shimizu, H. Nishi, H. Suzuki, K. Maeda, Solid state NOx sensor
combined with NASICON and Pb-Ru-based pyrochlore-type oxide
electrode. Sens Actuat B, 2000, 65(1-3):141-143. doi:10.1016/S0925-
4005(99)00442-6.
[19] Y. Yanagisawa, H. Nishimura, A badge-type personal sampler for
measurement of personal exposure to NO2 and NO in ambient air.
Environ Int, 1982, 8:235-242. doi:10.1016/0160-4120(82)90033-2.
[20] I. Allegrini, F. De Santis, V. Di Palo, C. Perrino, and M. Possanzini, Sci.
Total Environ., 1987, 67, 1-16.
[21] N.L. Eatough, S. McGregor, E.A. Lewis, D.J. Eatough, A.A. Huang,
E.C. Ellis, Atmos. Environ., 1988, 22, 1601-1618.
[22] J.M. Dasch, S.H. Cadle, K.G. Kennedy, and P.A. Mulawa, Atmos.
Environ., 23, 2775- 2782, 1989. 19-21
[23] M. Ferm, Atmos. Environ., 13, 1385-1393, 1979.
[24] M.P. Keuken, A. Wayers-I Jpelaan, J.J. Mols, R.P. Otjes, and J. Slanina,
Atmos. Environ.,23, 2177-2185, 1989.
[25] R. Niessner, and D. Klockow, Intern. J. Environ. Anal. Chem., 8, 163-
175, 1980.
[26] J. Slanina, A. Van Lamoen-Doornebal, W.A. Lingerak, W.Melior, D.
Klockow, and R. Niessner, Intern. J. Environ. Anal. Chem., 9, 59-70,
1981.
[27] J. Slanina, and C.A.M. Schoonebek, Anal. Chem., 57, 1955-1960, 1985.
[28] M.P. Ligocki, J.F. Pankow, Anal. Chem., 57, 1138-1144, 1985.
[29] A.B Bandy, B.J. Tucker, and P.J. Maroulis, Anal. Chem., 57, 1310-
1314, 1985.
[30] D.P.J. Lucero, J. Chromatogr. Sci., 23, 293-303, 1985.
[31] M. Termonia, and G. Alaerts, J. Chromatogr., 328, 367- 371, 1985.
[32] D.J. Freed "Trace Organic Analysis: A New Frontier in Analytical
Chemistry", (Hertz S., Chesler S. N., Eds.), Nat. Bur. Stand. Publ. No.
519, pp. 95, Washington DC, 1979.
[33] A. Calogirou, B.R. Larsen, C. Brussol, M. Duane, and D.Kotzias, Anal.
Chem., 68, 1499-1506, 1996.
[34] J.C. Farmer, and G.A. Dawson, J. Geophys. Res., 87, 4779-4785, 1984.
[35] M. Kato, M. Yamada, S. Suzuki, Anal. Chem., 56, 2529-2534, 1984.
[36] P.K. Dasgupta, Atmos. Environ., 18, 1593-1599, 1984.
[37] P.K. Dasgupta, S. Dong, H. Hwang, H.C. Yang, and Z.Genfa, Atmos.
Environ., 22, 949- 964, 1988.
[38] P.F. Lindgren, and P.K. Dasgupta, Anal. Chem., 61, 19-24, 1989.
[39] T.E. Kleindienst, P.B. Shepson, C.N. Nero, R.R. Arnts, S. B. Tejada,
G.I. Mackay, L.K.Mayne, H.I. Shiff, J.A. Lind,G.L. Kok, and A.L.
Lazrus, Atmos. Environ., 22, 1931-1939, 1988.
[40] O. Fan, and P.K. Dasgupta, Anal. Chem., 66, 551-556, 1994.
[41] Z. Genfa, P.K. Dasgupta, and S. Dong, Environ. Sci.Technol., 23, 1467-
1474, 1989.
[42] Z. Ve─ìeřa, and P.K. Dasgupta, Anal. Chem., 63, 2210-2216, 1991.
[43] M.P. Keuken, C.A. Schoonebek, A. Van Wensveen-Louter, and J.
Slanina, Atmos.Environ., 22, 2541-2548,1988.
[44] G.P. Wyers, R.P. Otjes, and J. Slanina, Atmos. Environ.,27A, 2085-
2090, 1993.
[45] M.T. Oms, P.A.C. Jongejan, A.C. Veltkamp, G.P.Wyers, J. Slanina, J.
Intern. J.Environ. Anal. Chem., 62, 207-218, 1996.
[46] Z. Ve─ìeřa, and J. Jan├ík, Anal. Chem., 59, 1494-1498, 1987.
[47] P. Miku┼íka, and Z. Ve─ìeřa, Anal. Chem., 64, 2187-2191, 1992.
[48] P. Miku┼íka, and Z. Ve─ìeřa, Anal. Chim. Acta, 374, 297-302, 1998.
[49] P. Miku┼íka, and Z. Ve─ìeřa, Anal. Chem., 77, 5534-5541, 2005.