Leadership´s Controlling via Complexity Investigation in Crisis Scenarios

In this paper will be discussed two coin´s sides of crisis scenarios dynamics. On the one's side is negative role of subsidiary scenario branches in its compactness weakening by means unduly chaotic atomizing, having many interactive feedbacks cases, increasing a value of a complexity here. This negative role reflects the complexity of use cases, weakening leader compliancy, which brings something as a ´readiness for controlling capabilities provision´. Leader´s dissatisfaction has zero compliancy, but factual it is a ´crossbar´ (interface in fact) between planning and executing use cases. On the other side of this coin, an advantage of rich scenarios embranchment is possible to see in a support of response awareness, readiness, preparedness, adaptability, creativity and flexibility. Here rich scenarios embranchment contributes to the steadiness and resistance of scenario mission actors. These all will be presented in live power-points ´Blazons´, modelled via DYVELOP (Dynamic Vector Logistics of Processes) on the Conference.

Visual Identity Components of Tourist Destination

In the world of modern communications, visual identity has predominant influence on the overall success of tourist destinations, but despite of these, the problem of designing thriving tourist destination visual identity and their components are hardly addressed. This study highlights the importance of building and managing the visual identity of tourist destination, and based on the empirical study of well-known Mediterranean destination of Croatia analyses three main components of tourist destination visual identity; name, slogan, and logo. Moreover, the paper shows how respondents perceive each component of Croatia’s visual identity. According to study, logo is the most important, followed by the name and slogan. Research also reveals that Croatian economy lags behind developed countries in understanding the importance of visual identity, and its influence on marketing goal achievements.

Propagation of Nonlinear Surface Waves in Relativistically Degenerate Quantum Plasma Half-Space

The nonlinear self-interaction of an electrostatic surface wave on a semibounded quantum plasma with relativistic degeneracy is investigated by using quantum hydrodynamic (QHD) model and the Poisson’s equation with appropriate boundary conditions. It is shown that a part of the second harmonic generated through self-interaction does not have a true surface wave character but propagates obliquely away from the plasma-vacuum interface into the bulk of plasma.

Dried Venison Quality Parameters Changes during Storage

The aim of the current research was to determine quality parameters changes of dried venison during storage. Protein, fat and moisture content dynamics as well microbiological quality was analyzed. For the experiments the meat (0.02×4.00×7.00 cm) pieces were marinated in “teriyaki sauce” marinade (composition: teriyaki sauce, sweet and sour sauce, taco sauce, soy sauce, American BBQ sauce hickory, sesame oil, garlic, garlic salt, tabasco red pepper sauce) at 4±2°C temperature for 48±1h. Sodium monophosphate (E339) was also added in part of marinade to improve the meat textural properties. After marinating, meat samples were dried in microwave-vacuum drier MUSSON–1, packaged in vacuum pouches made from polymer film (PA/PE) with barrier properties and storage for 4 months at 18±1°C temperature in dark place. Dried venison samples were analyzed after 0, 35, 91 and 112 days of storage. During the storage total plate counts of dried venison samples significantly (p

The Effects of NaF Concentration on the Zinc Coating Electroplated in Supercritical CO2 Mixed Zinc Chloride Bath

This research studies the electroplating of zinc coating in the zinc chloride bath mixed with supercritical CO2. The sodium fluoride (NaF) was used as the bath additive to change the structure and property of the coating, and therefore the roughness and corrosion resistance of the zinc coating was investigated. The surface characterization was performed using optical microscope (OM), X-ray diffractometer (XRD), and α-step profilometer. Moreover, the potentiodynamic polarization measurement in 3% NaCl solution was employed in the corrosion resistance evaluation. Because of the emulsification of the electrolyte mixed in Sc-CO2, the electroplated zinc produced the coating with smoother surface, smaller grain, better throwing power and higher corrosion resistance. The main role played by the NaF was to reduce the coating’s roughness and grain size. In other words, the CO2 mixed with the electrolyte under the supercritical condition performed the similar function as brighter and leveler in zinc electroplating to enhance the throwing power and corrosion resistance of the coating.

Studies on Ti/Al Sheet Joint Using Laser Beam Welding – A Review

Laser beam welding has wide acceptability due to least welding distortion, low labour costs and convenient operation. However, laser welding for dissimilar titanium and aluminium alloys is a new area which is having wider applications in aerospace, aircraft, automotive, electronics and other industries. The present study is concerned with welding parameters namely laser power, welding speed, focusing distance and type of shielding gas and thereby evaluate welding performance of titanium and aluminium alloy thin sheets. This paper reviews the basic concepts associated with different parameters of Ti/Al sheet joint using Laser beam welding.

Two Day Ahead Short Term Load Forecasting Neural Network Based

This paper presents an Artificial Neural Network based approach for short-term load forecasting and exactly for two days ahead. Two seasons have been discussed for Iraqi power system, namely summer and winter; the hourly load demand is the most important input variables for ANN based load forecasting. The recorded daily load profile with a lead time of 1-48 hours for July and December of the year 2012 was obtained from the operation and control center that belongs to the Ministry of Iraqi electricity. The results of the comparison show that the neural network gives a good prediction for the load forecasting and for two days ahead.

Magnet Position Variation of the Electromagnetic Actuation System in a Torsional Scanner

A mechanically-resonant torsional spring scanner was developed in a recent study. Various methods were developed to improve the angular displacement of the scanner while maintaining the scanner frequency. However the effects of rotor magnet radial position on scanner characteristics were not well investigated. In this study, the relationships between the magnet position and the scanner characteristics such as natural frequency, angular displacement and stress level were studied. A finite element model was created and an average deviation of 3.18% was found between the simulation and experimental results, qualifying the simulation results as a guide for further investigations. Three magnet positions on the transverse oscillating suspended plate were investigated by finite element analysis (FEA) and one of the positions were selected as the design position. The magnet position with the longest distance from the twist axis of mirror was selected since it attains minimum stress level, while exceeding the minimum critical flicker frequency and delivering the targeted angular displacement to the scanner.

Impact of Node Density and Transmission Range on the Performance of OLSR and DSDV Routing Protocols in VANET City Scenarios

Vehicular Ad hoc Network (VANET) is a special case of Mobile Ad hoc Network (MANET) used to establish communications and exchange information among nearby vehicles and between vehicles and nearby fixed infrastructure. VANET is seen as a promising technology used to provide safety, efficiency, assistance and comfort to the road users. Routing is an important issue in Vehicular Ad Hoc Network to find and maintain communication between vehicles due to the highly dynamic topology, frequently disconnected network and mobility constraints. This paper evaluates the performance of two most popular proactive routing protocols OLSR and DSDV in real city traffic scenario on the basis of three metrics namely Packet delivery ratio, throughput and average end to end delay by varying vehicles density and transmission range.

Dynamic Modeling and Simulation of a STATCOM/SMES Compensator in Power Systems

The advent of Flexible AC Transmission Systems (FACTS) is giving rise to a new family of power electronic equipment emerging for controlling and optimizing the performance of power system, e.g. STATCOM. Static synchronous Compensator (STATCOM) is a commonly used FACTS device and has been successfully applied in power systems. In this sense, superconducting magnetic energy storage (SMES) in integration with a static synchronous compensator (STATCOM) is capable of supplying power systems with both active and reactive powers simultaneously and very rapidly, and thus is able to enhance the security dramatically. In this paper the structure and characteristics of the STATCOM/SMES is proposed. In addition, using a proper control scheme, STATCOM/ SMES is tested on an IEEE 3-bus system and more effective performance of the presented STATCOM/SMES compensator is evaluated with alone STATCOM through the dynamic simulation by using PSCAD/EMTDC software.

An EWMA p Chart Based On Improved Square Root Transformation

Generally, the traditional Shewhart p chart has been developed by for charting the binomial data. This chart has been developed using the normal approximation with condition as low defect level and the small to moderate sample size. In real applications, however, are away from these assumptions due to skewness in the exact distribution. In this paper, a modified Exponentially Weighted Moving Average (EWMA) control chat for detecting a change in binomial data by improving square root transformations, namely ISRT p EWMA control chart. The numerical results show that ISRT p EWMA chart is superior to ISRT p chart for small to moderate shifts, otherwise, the latter is better for large shifts.

Phase Diagram Including a Negative Pressure Region for a Thermotropic Liquid Crystal in a Metal Berthelot Tube

Thermodynamic properties of liquids under negative pressures are interesting and important in fields of scienceand technology. Here, phase transitions of a thermotropic liquid crystal are investigatedin a range from positive to negative pressures with a metal Berthelot tube using a commercial pressure transducer.Two co-existinglines, namely crystal (Kr) –nematic (N), and isotropic liquid (I) - nematic (N) lines, weredrawn in a pressure - temperature plane. The I-N line was drawn to ca. -5 (MPa).

Women’s Rights in Conflict with People’s Cultural Autonomy: Problems of Cultural Accommodation

The paper explores the cultural rights accommodation by the state which has left many unresolved problems. The cultural rights sometimes violate the basic individual rights of the members inside the community like women. The paper further explicates certain cultural norms and practices which violates the rights of women inside the community in the name of culture.

Phasor Analysis of a Synchronous Generator: A Bond Graph Approach

This paper presents the use of phasor bond graphs to obtain the steady-state behavior of a synchronous generator. The phasor bond graph elements are built using 2D multibonds, which represent the real and imaginary part of the phasor. The dynamic bond graph model of a salient-pole synchronous generator is showed, and verified viz. a sudden short-circuit test. The reduction of the dynamic model into a phasor representation is described. The previous test is executed on the phasor bond graph model, and its steady-state values are compared with the dynamic response. Besides, the widely used power (torque)-angle curves are obtained by means of the phasor bond graph model, to test the usefulness of this model.

Research and Development of Lightweight Repair Mortars with Focus on Their Resistance to High Temperatures

In this article our research focused on study of basic physical and mechanical parameters of polymer-cement repair materials is presented. Namely the influence of applied aggregates in combination with active admixture is specially considered. New formulas which were exposed in ambient with temperature even to 1000°C were suggested. Subsequently densities and strength characteristics including their changes were evaluated. Selected samples were analyzed using electron microscope. The positive influence of porous aggregates based on sintered ash was definitely demonstrated. Further it was found than in terms of thermal resistance the effective micro silica amount represents 5% to 7.5% of cement weight.

Entropy Generation Analysis of Heat Recovery Vapor Generator for Ammonia-Water Mixture

This paper carries out a performance analysis based on the first and second laws of thermodynamics for heat recovery vapor generator (HRVG) of ammonia-water mixture when the heat source is low-temperature energy in the form of sensible heat. In the analysis, effects of the ammonia mass concentration and mass flow ratio of the binary mixture are investigated on the system performance including the effectiveness of heat transfer, entropy generation, and exergy efficiency. The results show that the ammonia concentration and the mass flow ratio of the mixture have significant effects on the system performance of HRVG.

Sliding Mode Position Control for Permanent Magnet Synchronous Motors Based On Passivity Approach

In this paper, a sliding mode control method based on the passivity approach is proposed to control the position of surface-mounted permanent magnet synchronous motors (PMSMs). Firstly, the dynamics of a PMSM was proved to be strictly passive. The position controller with an adaptive law was used to estimate the load torque to eliminate the chattering effects associated with the conventional sliding mode controller. The stability analysis of the overall position control system was carried out by adopting the passivity theorem instead of Lyapunov-type arguments. Finally, experimental results were provided to show that the good position tracking can be obtained, and exhibit robustness in the variations of the motor parameters and load torque disturbances.

Ensuring Consistency under the Snapshot Isolation

By running transactions under the SNAPSHOT isolation we can achieve a good level of concurrency, specially in databases with high-intensive read workloads. However, SNAPSHOT is not immune to all the problems that arise from competing transactions and therefore no serialization warranty exists. We propose in this paper a technique to obtain data consistency with SNAPSHOT by using some special triggers that we named DAEMON TRIGGERS. Besides keeping the benefits of the SNAPSHOT isolation, the technique is specially useful for those database systems that do not have an isolation level that ensures serializability, like Firebird and Oracle. We describe all the anomalies that might arise when using the SNAPSHOT isolation and show how to preclude them with DAEMON TRIGGERS. Based on the methodology presented here, it is also proposed the creation of a new isolation level: DAEMON SNAPSHOT.

Computational Analysis of Potential Inhibitors Selected Based On Structural Similarity for the Src SH2 Domain

The inhibition of SH2 domain regulated protein-protein interactions is an attractive target for developing an effective chemotherapeutic approach in the treatment of disease. Molecular simulation is a useful tool for developing new drugs and for studying molecular recognition. In this study, we searched potential drug compounds for the inhibition of SH2 domain by performing structural similarity search in PubChem Compound Database. A total of 37 compounds were screened from the database, and then we used the LibDock docking program to evaluate the inhibition effect. The best three compounds (AP22408, CID 71463546 and CID 9917321) were chosen for MD simulations after the LibDock docking. Our results show that the compound CID 9917321 can produce a more stable protein-ligand complex compared to other two currently known inhibitors of Src SH2 domain. The compound CID 9917321 may be useful for the inhibition of SH2 domain based on these computational results. Subsequently experiments are needed to verify the effect of compound CID 9917321 on the SH2 domain in the future studies.

The Conception of Implementation of Vision for European Forensic Science 2020 in Lithuania

The Council of European Union (EU Council) has stressed on several occasions the need for a concerted, comprehensive and effective solution to delinquency problems in EU communities. In the context of establishing a European Forensic Science Area and the development of forensic science infrastructure in Europe, EU Council believes that forensic science can significantly contribute to the efficiency of law enforcement, crime prevention and combating crimes. Lithuanian scientists have consolidated to implement a project named “Conception of the vision for European Forensic Science 2020 implementation in Lithuania” (the project is funded for the period of 1 March 2014 - 31 December 2016) with the objective to create a conception of implementation of the vision for European Forensic Science 2020 in Lithuania by 1) evaluating the current status of Lithuania’s forensic system and opportunities for its improvement; 2) analysing achievements and knowledge in investigation of crimes listed in conclusions of EU Council on the vision for European Forensic Science 2020 including creation of a European Forensic Science Area and the development of forensic science infrastructure in Europe: trafficking in human beings, organised crime and terrorism; 3) analysing conceptions of criminalistics, which differ in different EU member states due to the variety of forensic schools, and finding means for their harmonization. Apart from the conception of implementation of the vision for European Forensic Science 2020 in Lithuania, the Project is expected to suggest provisions that will be relevant to other EU countries as well. Consequently, the presented conception of implementation of vision for European Forensic Science 2020 in Lithuania could initiate a project for a common vision of European Forensic Science and contribute to the development of the EU as an area of freedom, security and justice. The article presents main ideas of the project of the conception of the vision for European Forensic Science 2020 of EU Council and analyses its legal background, as well as prospects of and challenges for its implementation in Lithuania and the EU.