Phasor Analysis of a Synchronous Generator: A Bond Graph Approach

This paper presents the use of phasor bond graphs to obtain the steady-state behavior of a synchronous generator. The phasor bond graph elements are built using 2D multibonds, which represent the real and imaginary part of the phasor. The dynamic bond graph model of a salient-pole synchronous generator is showed, and verified viz. a sudden short-circuit test. The reduction of the dynamic model into a phasor representation is described. The previous test is executed on the phasor bond graph model, and its steady-state values are compared with the dynamic response. Besides, the widely used power (torque)-angle curves are obtained by means of the phasor bond graph model, to test the usefulness of this model.

Comparison of an Interior Mounted Permanent Magnet Synchronous Generator with a Synchronous Reluctance Generator for a Wind Application

This article presents a performance comparison of an interior mounted permanent magnet synchronous generator (IPMSG) with a synchronous reluctance generator (SynRG) with the same size for a wind application. It is found that using the same geometrical dimensions, a SynRG can convert 74 % of the power that an IPMSG can convert, while it has 80% of the IPMSG weight. Moreover it is found that the efficieny for the IMPSG is 99% at rated power compared to 98.7% for the SynRG.

Modeling and Control of Direct Driven PMSG for Ultra Large Wind Turbines

This paper focuses on developing an integrated reliable and sophisticated model for ultra large wind turbines And to study the performance and analysis of vector control on large wind turbines. With the advance of power electronics technology, direct driven multi-pole radial flux PMSG (Permanent Magnet Synchronous Generator) has proven to be a good choice for wind turbines manufacturers. To study the wind energy conversion systems, it is important to develop a wind turbine simulator that is able to produce realistic and validated conditions that occur in real ultra MW wind turbines. Three different packages are used to simulate this model, namely, Turbsim, FAST and Simulink. Turbsim is a Full field wind simulator developed by National Renewable Energy Laboratory (NREL). The wind turbine mechanical parts are modeled by FAST (Fatigue, Aerodynamics, Structures and Turbulence) code which is also developed by NREL. Simulink is used to model the PMSG, full scale back to back IGBT converters, and the grid.

Wind Farm Modeling for Steady State and Dynamic Analysis

This paper focuses on PSS/E modeling of wind farms of Doubly-fed Induction Generator (DFIG) type and their impact on issues of power system operation. Since Wind Turbine Generators (WTG) don-t have the same characteristics as synchronous generators, the appropriate modeling of wind farms is essential for transmission system operators to analyze the best options of transmission grid reinforcements as well as to evaluate the wind power impact on reliability and security of supply. With the high excepted penetration of wind power into the power system a simultaneous loss of Wind Farm generation will put at risk power system security and reliability. Therefore, the main wind grid code requirements concern the fault ride through capability and frequency operation range of wind turbines. In case of grid faults wind turbines have to supply a definite reactive power depending on the instantaneous voltage and to return quickly to normal operation.