An Automated High Pressure Differential Thermal Analysis System for Phase Transformation Studies

A piston cylinder based high pressure differential thermal analyzer system is developed to investigate phase transformations, melting, glass transitions, crystallization behavior of inorganic materials, glassy systems etc., at ambient to 4 GPa and at room temperature to 1073 K. The pressure is calibrated by the phase transition of bismuth and ytterbium and temperature is calibrated by using thermocouple data chart. The system developed is calibrated using benzoic acid, ammonium nitrate and it has a pressure and temperature control of ± 8.9 x 10 -4 GPa , ± 2 K respectively. The phase transition of Asx Te100-x chalcogenides, ferrous oxide and strontium boride are studied using the indigenously developed system.

Observer Design for Ecological Monitoring

Monitoring of ecological systems is one of the major issues in ecosystem research. The concepts and methodology of mathematical systems theory provide useful tools to face this problem. In many cases, state monitoring of a complex ecological system consists in observation (measurement) of certain state variables, and the whole state process has to be determined from the observed data. The solution proposed in the paper is the design of an observer system, which makes it possible to approximately recover the state process from its partial observation. The method is illustrated with a trophic chain of resource – producer – primary consumer type and a numerical example is also presented.

A Comparison of Experimental Data with Monte Carlo Calculations for Optimisation of the Sourceto- Detector Distance in Determining the Efficiency of a LaBr3:Ce (5%) Detector

Cerium-doped lanthanum bromide LaBr3:Ce(5%) crystals are considered to be one of the most advanced scintillator materials used in PET scanning, combining a high light yield, fast decay time and excellent energy resolution. Apart from the correct choice of scintillator, it is also important to optimise the detector geometry, not least in terms of source-to-detector distance in order to obtain reliable measurements and efficiency. In this study a commercially available 25 mm x 25 mm BrilLanCeTM 380 LaBr3: Ce (5%) detector was characterised in terms of its efficiency at varying source-to-detector distances. Gamma-ray spectra of 22Na, 60Co, and 137Cs were separately acquired at distances of 5, 10, 15, and 20cm. As a result of the change in solid angle subtended by the detector, the geometric efficiency reduced in efficiency with increasing distance. High efficiencies at low distances can cause pulse pile-up when subsequent photons are detected before previously detected events have decayed. To reduce this systematic error the source-to-detector distance should be balanced between efficiency and pulse pile-up suppression as otherwise pile-up corrections would need to be necessary at short distances. In addition to the experimental measurements Monte Carlo simulations have been carried out for the same setup, allowing a comparison of results. The advantages and disadvantages of each approach have been highlighted.

A New Heuristic Approach for Large Size Zero-One Multi Knapsack Problem Using Intercept Matrix

This paper presents a heuristic to solve large size 0-1 Multi constrained Knapsack problem (01MKP) which is NP-hard. Many researchers are used heuristic operator to identify the redundant constraints of Linear Programming Problem before applying the regular procedure to solve it. We use the intercept matrix to identify the zero valued variables of 01MKP which is known as redundant variables. In this heuristic, first the dominance property of the intercept matrix of constraints is exploited to reduce the search space to find the optimal or near optimal solutions of 01MKP, second, we improve the solution by using the pseudo-utility ratio based on surrogate constraint of 01MKP. This heuristic is tested for benchmark problems of sizes upto 2500, taken from literature and the results are compared with optimum solutions. Space and computational complexity of solving 01MKP using this approach are also presented. The encouraging results especially for relatively large size test problems indicate that this heuristic can successfully be used for finding good solutions for highly constrained NP-hard problems.

An Improved Construction Method for MIHCs on Cycle Composition Networks

Many well-known interconnection networks, such as kary n-cubes, recursive circulant graphs, generalized recursive circulant graphs, circulant graphs and so on, are shown to belong to the family of cycle composition networks. Recently, various studies about mutually independent hamiltonian cycles, abbreviated as MIHC-s, on interconnection networks are published. In this paper, using an improved construction method, we obtain MIHC-s on cycle composition networks with a much weaker condition than the known result. In fact, we established the existence of MIHC-s in the cycle composition networks and the result is optimal in the sense that the number of MIHC-s we constructed is maximal.

Design Optimization of Aerocapture with Aerodynamic-Environment-Adaptive Variable Geometry Flexible Aeroshell

This paper proposes the concept of aerocapture with aerodynamic-environment-adaptive variable geometry flexible aeroshell that vehicle deploys. The flexible membrane is composed of thin-layer film or textile as its aeroshell in order to solve some problems obstructing realization of aerocapture technique. Multi-objective optimization study is conducted to investigate solutions and derive design guidelines. As a result, solutions which can avoid aerodynamic heating and enlarge the corridor width up to 10% are obtained successfully, so that the effectiveness of this concept can be demonstrated. The deformation-use optimum solution changes its drag coefficient from 1.6 to 1.1, along with the change in dynamic pressure. Moreover, optimization results show that deformation-use solution requires the membrane for which upper temperature limit and strain limit are more than 700 K and 120%, respectively, and elasticity (Young-s modulus) is of order of 106 Pa.

An Adequate Choice of Initial Sample Size for Selection Approach

In this paper, we consider the effect of the initial sample size on the performance of a sequential approach that used in selecting a good enough simulated system, when the number of alternatives is very large. We implement a sequential approach on M=M=1 queuing system under some parameter settings, with a different choice of the initial sample sizes to explore the impacts on the performance of this approach. The results show that the choice of the initial sample size does affect the performance of our selection approach.

Mechanical Quadrature Methods and Their Extrapolations for Solving First Kind Boundary Integral Equations of Anisotropic Darcy-s Equation

The mechanical quadrature methods for solving the boundary integral equations of the anisotropic Darcy-s equations with Dirichlet conditions in smooth domains are presented. By applying the collectively compact theory, we prove the convergence and stability of approximate solutions. The asymptotic expansions for the error show that the methods converge with the order O (h3), where h is the mesh size. Based on these analysis, extrapolation methods can be introduced to achieve a higher convergence rate O (h5). An a posterior asymptotic error representation is derived in order to construct self-adaptive algorithms. Finally, the numerical experiments show the efficiency of our methods.

The Riemann Barycenter Computation and Means of Several Matrices

An iterative definition of any n variable mean function is given in this article, which iteratively uses the two-variable form of the corresponding two-variable mean function. This extension method omits recursivity which is an important improvement compared with certain recursive formulas given before by Ando-Li-Mathias, Petz- Temesi. Furthermore it is conjectured here that this iterative algorithm coincides with the solution of the Riemann centroid minimization problem. Certain simulations are given here to compare the convergence rate of the different algorithms given in the literature. These algorithms will be the gradient and the Newton mehod for the Riemann centroid computation.

Role of Acoustic Pressure on the Dynamics of Moving Single-Bubble Sonoluminescence

Role of acoustic driving pressure on the translational-radial dynamics of a moving single bubble sonoluminescence (m-SBSL) has been numerically investigated. The results indicate that increase in the amplitude of the driving pressure leads to increase in the bubble peak temperature. The length and the shape of the trajectory of the bubble depends on the acoustic pressure and because of the spatially dependence of the radial dynamics of the moving bubble, its peak temperature varies during the acoustical pulses. The results are in good agreement with the experimental reports on m-SBSL.

Using Tabu Search to Analyze the Mauritian Economic Sectors

The aim of this paper is to express the input-output matrix as a linear ordering problem which is classified as an NP-hard problem. We then use a Tabu search algorithm to find the best permutation among sectors in the input-output matrix that will give an optimal solution. This optimal permutation can be useful in designing policies and strategies for economists and government in their goal of maximizing the gross domestic product.

Reasoning with Dynamic Domains and Computer Security

Representing objects in a dynamic domain is essential in commonsense reasoning under some circumstances. Classical logics and their nonmonotonic consequences, however, are usually not able to deal with reasoning with dynamic domains due to the fact that every constant in the logical language denotes some existing object in the static domain. In this paper, we explore a logical formalization which allows us to represent nonexisting objects in commonsense reasoning. A formal system named N-theory is proposed for this purpose and its possible application in computer security is briefly discussed.

Dynamic Models versus Frailty Models for Recurrent Event Data

Recurrent event data is a special type of multivariate survival data. Dynamic and frailty models are one of the approaches that dealt with this kind of data. A comparison between these two models is studied using the empirical standard deviation of the standardized martingale residual processes as a way of assessing the fit of the two models based on the Aalen additive regression model. Here we found both approaches took heterogeneity into account and produce residual standard deviations close to each other both in the simulation study and in the real data set.

Analyzing the Factors Influencing Exclusive Breastfeeding Using the Generalized Poisson Regression Model

Exclusive breastfeeding is the feeding of a baby on no other milk apart from breast milk. Exclusive breastfeeding during the first 6 months of life is of fundamental importance because it supports optimal growth and development during infancy and reduces the risk of obliterating diseases and problems. Moreover, in developed countries, exclusive breastfeeding has decreased the incidence and/or severity of diarrhea, lower respiratory infection and urinary tract infection. In this paper, we study the factors that influence exclusive breastfeeding and use the Generalized Poisson regression model to analyze the practices of exclusive breastfeeding in Mauritius. We develop two sets of quasi-likelihood equations (QLE)to estimate the parameters.

Natural Convection Boundary Layer Flow of a Viscoelastic Fluid on Solid Sphere with Newtonian Heating

The present paper considers the steady free convection boundary layer flow of a viscoelastic fluid on solid sphere with Newtonian heating. The boundary layer equations are an order higher than those for the Newtonian (viscous) fluid and the adherence boundary conditions are insufficient to determine the solution of these equations completely. Thus, the augmentation an extra boundary condition is needed to perform the numerical computational. The governing boundary layer equations are first transformed into non-dimensional form by using special dimensionless group and then solved by using an implicit finite difference scheme. The results are displayed graphically to illustrate the influence of viscoelastic K and Prandtl Number Pr parameters on skin friction, heat transfer, velocity profiles and temperature profiles. Present results are compared with the published papers and are found to concur very well.

Dengue Disease Mapping with Standardized Morbidity Ratio and Poisson-gamma Model: An Analysis of Dengue Disease in Perak, Malaysia

Dengue disease is an infectious vector-borne viral disease that is commonly found in tropical and sub-tropical regions, especially in urban and semi-urban areas, around the world and including Malaysia. There is no currently available vaccine or chemotherapy for the prevention or treatment of dengue disease. Therefore prevention and treatment of the disease depend on vector surveillance and control measures. Disease risk mapping has been recognized as an important tool in the prevention and control strategies for diseases. The choice of statistical model used for relative risk estimation is important as a good model will subsequently produce a good disease risk map. Therefore, the aim of this study is to estimate the relative risk for dengue disease based initially on the most common statistic used in disease mapping called Standardized Morbidity Ratio (SMR) and one of the earliest applications of Bayesian methodology called Poisson-gamma model. This paper begins by providing a review of the SMR method, which we then apply to dengue data of Perak, Malaysia. We then fit an extension of the SMR method, which is the Poisson-gamma model. Both results are displayed and compared using graph, tables and maps. Results of the analysis shows that the latter method gives a better relative risk estimates compared with using the SMR. The Poisson-gamma model has been demonstrated can overcome the problem of SMR when there is no observed dengue cases in certain regions. However, covariate adjustment in this model is difficult and there is no possibility for allowing spatial correlation between risks in adjacent areas. The drawbacks of this model have motivated many researchers to propose other alternative methods for estimating the risk.

Winding Numbers of Paths of Analytic Functions Zeros in Finite Quantum Systems

The paper contains an investigation of winding numbers of paths of zeros of analytic theta functions. We have considered briefly an analytic representation of finite quantum systems ZN. The analytic functions on a torus have exactly N zeros. The brief introduction to the zeros of analytic functions and there time evolution is given. We have discussed the periodic finite quantum systems. We have introduced the winding numbers in general. We consider the winding numbers of the zeros of analytic theta functions.

Open Problems on Zeros of Analytic Functions in Finite Quantum Systems

The paper contains an investigation on basic problems about the zeros of analytic theta functions. A brief introduction to analytic representation of finite quantum systems is given. The zeros of this function and there evolution time are discussed. Two open problems are introduced. The first problem discusses the cases when the zeros follow the same path. As the basis change the quantum state |f transforms into different quantum state. The second problem is to define a map between two toruses where the domain and the range of this map are the analytic functions on toruses.