Calibration of Time-Skew Error in a M-Channel Time-Interleaved Analog-to-Digital Converter

Offset mismatch, gain mismatch, and time-skew error between time-interleaved channels limit the performance of time-interleaved analog-to-digital converters (TIADC). This paper focused on the time-skew error. A new technique for calibrating time-skew error in M-channels TIADC is described, and simulation results are also presented.

Pushing the Limits of Address Based Authentication: How to Avoid MAC Address Spoofing in Wireless LANs

It is well-known that in wireless local area networks, authenticating nodes by their MAC addresses is not secure since it is very easy for an attacker to learn one of the authorized addresses and change his MAC address accordingly. In this paper, in order to prevent MAC address spoofing attacks, we propose to use dynamically changing MAC addresses and make each address usable for only one session. The scheme we propose does not require any change in 802.11 protocols and incurs only a small performance overhead. One of the nice features of our new scheme is that no third party can link different communication sessions of the same user by monitoring MAC addresses therefore our scheme is preferable also with respect to user privacy.

Distribution Voltage Regulation Under Three- Phase Fault by Using D-STATCOM

This paper presents the voltage regulation scheme of D-STATCOM under three-phase faults. It consists of the voltage detection and voltage regulation schemes in the 0dq reference. The proposed control strategy uses the proportional controller in which the proportional gain, kp, is appropriately adjusted by using genetic algorithms. To verify its use, a simplified 4-bus test system is situated by assuming a three-phase fault at bus 4. As a result, the DSTATCOM can resume the load voltage to the desired level within 1.8 ms. This confirms that the proposed voltage regulation scheme performs well under three-phase fault events.

Design and Implementation of a Microcontroller Based LCD Screen Digital Stop Watch

The stop watch is used to measure the time required for a certain event. This is different from normal clocks in many ways, one of which is the accuracy of time. The stop watch requires much more accuracy than the normal clocks. In this paper, an ATmega8535 microcontroller was used to control the stop watch, by which perfect accuracy can be ensured. For compiling the C code and for loading the compiled .hex file into the microcontroller, AVR studio and PonyProg were used respectively. The stop watch is also different from traditional stop watches, as it contains two different timing modes namely 'Split timing' and 'Lap timing'.

Tag Broker Model for Protecting Privacy in RFID Environment

RFID system, in which we give identification number to each item and detect it with radio frequency, supports more variable service than barcode system can do. For example, a refrigerator with RFID reader and internet connection will automatically notify expiration of food validity to us. But, in spite of its convenience, RFID system has some security threats, because anybody can get ID information of item easily. One of most critical threats is privacy invasion. Existing privacy protection schemes or systems have been proposed, and these schemes or systems defend normal users from attempts that any attacker tries to get information using RFID tag value. But, these systems still have weakness that attacker can get information using analogous value instead of original tag value. In this paper, we mention this type of attack more precisely and suggest 'Tag Broker Model', which can defend it. Tag broker in this model translates original tag value to random value, and user can only get random value. Attacker can not use analogous tag value, because he/she is not able to know original one from it.

Comparison between Haar and Daubechies Wavelet Transformations on FPGA Technology

Recently, the Field Programmable Gate Array (FPGA) technology offers the potential of designing high performance systems at low cost. The discrete wavelet transform has gained the reputation of being a very effective signal analysis tool for many practical applications. However, due to its computation-intensive nature, current implementation of the transform falls short of meeting real-time processing requirements of most application. The objectives of this paper are implement the Haar and Daubechies wavelets using FPGA technology. In addition, the Bit Error Rate (BER) between the input audio signal and the reconstructed output signal for each wavelet is calculated. From the BER, it is seen that the implementations execute the operation of the wavelet transform correctly and satisfying the perfect reconstruction conditions. The design procedure has been explained and designed using the stat-ofart Electronic Design Automation (EDA) tools for system design on FPGA. Simulation, synthesis and implementation on the FPGA target technology has been carried out.

Trajectory Planning Design Equations and Control of a 4 - axes Stationary Robotic Arm

This paper features the trajectory planning design of a indigenously developed 4-Axis SCARA robot which is used for doing successful robotic manipulation task in the laboratory. Once, a trajectory is being designed and given as input to the robot, the robot's gripper tip moves along that specified trajectory. Trajectories have to be designed in the work space only. The main idea of this paper is to design a continuous path trajectory model for the indigenously developed SCARA robot arm during its maneuvering from one point to another point (during pick and place operations) in a workspace avoiding all the obstacles in its path of motion.

Resonant-Based Capacitive Pressure Sensor Read-Out Oscillating at 1.67 GHz in 0.18

This paper presents a resonant-based read-out circuit for capacitive pressure sensors. The proposed read-out circuit consists of an LC oscillator and a counter. The circuit detects the capacitance changes of a capacitive pressure sensor by means of frequency shifts from its nominal operation frequency. The proposed circuit is designed in 0.18m CMOS with an estimated power consumption of 43.1mW. Simulation results show that the circuit has a capacitive resolution of 8.06kHz/fF, which enables it for high resolution pressure detection.

A Novel Approach to Fault Classification and Fault Location for Medium Voltage Cables Based on Artificial Neural Network

A novel application of neural network approach to fault classification and fault location of Medium voltage cables is demonstrated in this paper. Different faults on a protected cable should be classified and located correctly. This paper presents the use of neural networks as a pattern classifier algorithm to perform these tasks. The proposed scheme is insensitive to variation of different parameters such as fault type, fault resistance, and fault inception angle. Studies show that the proposed technique is able to offer high accuracy in both of the fault classification and fault location tasks.

A Fuzzy Predictive Filter for Sinusoidal Signals with Time-Varying Frequencies

Prediction of sinusoidal signals with time-varying frequencies has been an important research topic in power electronics systems. To solve this problem, we propose a new fuzzy predictive filtering scheme, which is based on a Finite Impulse Response (FIR) filter bank. Fuzzy logic is introduced here to provide appropriate interpolation of individual filter outputs. Therefore, instead of regular 'hard' switching, our method has the advantageous 'soft' switching among different filters. Simulation comparisons between the fuzzy predictive filtering and conventional filter bank-based approach are made to demonstrate that the new scheme can achieve an enhanced prediction performance for slowly changing sinusoidal input signals.

Comparison of the Existing Methods in Determination of the Characteristic Polynomial

This paper presents comparison among methods of determination of the characteristic polynomial coefficients. First, the resultant systems from the methods are compared based on frequency criteria such as the closed loop bandwidth, gain and phase margins. Then the step responses of the resultant systems are compared on the basis of the transient behavior criteria including overshoot, rise time, settling time and error (via IAE, ITAE, ISE and ITSE integral indices). Also relative stability of the systems is compared together. Finally the best choices in regards to the above diverse criteria are presented.

Novel SNC-NN-MRAS Based Speed Estimator for Sensor-Less Vector Controlled IM Drives

Rotor Flux based Model Reference Adaptive System (RF-MRAS) is the most popularly used conventional speed estimation scheme for sensor-less IM drives. In this scheme, the voltage model equations are used for the reference model. This encounters major drawbacks at low frequencies/speed which leads to the poor performance of RF-MRAS. Replacing the reference model using Neural Network (NN) based flux estimator provides an alternate solution and addresses such drawbacks. This paper identifies an NN based flux estimator using Single Neuron Cascaded (SNC) Architecture. The proposed SNC-NN model replaces the conventional voltage model in RF-MRAS to form a novel MRAS scheme named as SNC-NN-MRAS. Through simulation the proposed SNC-NN-MRAS is shown to be promising in terms of all major issues and robustness to parameter variation. The suitability of the proposed SNC-NN-MRAS based speed estimator and its advantages over RF-MRAS for sensor-less induction motor drives is comprehensively presented through extensive simulations.

Flagging Critical Components to Prevent Transient Faults in Real-Time Systems

This paper proposes the use of metrics in design space exploration that highlight where in the structure of the model and at what point in the behaviour, prevention is needed against transient faults. Previous approaches to tackle transient faults focused on recovery after detection. Almost no research has been directed towards preventive measures. But in real-time systems, hard deadlines are performance requirements that absolutely must be met and a missed deadline constitutes an erroneous action and a possible system failure. This paper proposes the use of metrics to assess the system design to flag where transient faults may have significant impact. These tools then allow the design to be changed to minimize that impact, and they also flag where particular design techniques – such as coding of communications or memories – need to be applied in later stages of design.

An Optimal Unsupervised Satellite image Segmentation Approach Based on Pearson System and k-Means Clustering Algorithm Initialization

This paper presents an optimal and unsupervised satellite image segmentation approach based on Pearson system and k-Means Clustering Algorithm Initialization. Such method could be considered as original by the fact that it utilised K-Means clustering algorithm for an optimal initialisation of image class number on one hand and it exploited Pearson system for an optimal statistical distributions- affectation of each considered class on the other hand. Satellite image exploitation requires the use of different approaches, especially those founded on the unsupervised statistical segmentation principle. Such approaches necessitate definition of several parameters like image class number, class variables- estimation and generalised mixture distributions. Use of statistical images- attributes assured convincing and promoting results under the condition of having an optimal initialisation step with appropriated statistical distributions- affectation. Pearson system associated with a k-means clustering algorithm and Stochastic Expectation-Maximization 'SEM' algorithm could be adapted to such problem. For each image-s class, Pearson system attributes one distribution type according to different parameters and especially the Skewness 'β1' and the kurtosis 'β2'. The different adapted algorithms, K-Means clustering algorithm, SEM algorithm and Pearson system algorithm, are then applied to satellite image segmentation problem. Efficiency of those combined algorithms was firstly validated with the Mean Quadratic Error 'MQE' evaluation, and secondly with visual inspection along several comparisons of these unsupervised images- segmentation.

Mathematical Modelling of Single Phase Unity Power Factor Boost Converter

An optimal control strategy based on simple model, a single phase unity power factor boost converter is presented with an evaluation of first order differential equations. This paper presents an evaluation of single phase boost converter having power factor correction. The simple discrete model of boost converter is formed and optimal control is obtained, digital PI is adopted to adjust control error. The method of instantaneous current control is proposed in this paper for its good tracking performance of dynamic response. The simulation and experimental results verified our design.

Effect of Atmospheric Turbulence on AcquisitionTime of Ground to Deep Space Optical Communication System

The performance of ground to deep space optical communication systems is degraded by distortion of the beam as it propagates through the turbulent atmosphere. Turbulence causes fluctuations in the intensity of the received signal which ultimately affects the acquisition time required to acquire and locate the spaceborne target using narrow laser beam. In this paper, performance of free-space optical (FSO) communication system in atmospheric turbulence has been analyzed in terms of acquisition time for coherent and non-coherent modulation schemes. Numerical results presented in graphical and tabular forms show that the acquisition time increases with the increase in turbulence level. This is true for both schemes. The BPSK has lowest acquisition time among all schemes. In non-coherent schemes, M-PPM performs better than the other schemes. With the increase in M, acquisition time becomes lower, but at the cost of increase in system complexity.

Influence of Number Parallels Paths of a Winding on Overvoltage in the Asynchronous Motors Fed by PWM- converters

This work is devoted to the calculation of the undulatory parameters and the study of the influence of te number parallel path of a winding on overvoltage compared to the frame and between turns (sections) in a multiturn random winding of an asynchronous motors supplied with PWM- converters.

Implementation of the SIP Express Router with Mediaproxy Method on VoIP

Voice Over IP (VoIP) is a technology that could pass the voice traffic and data packet form over an IP network. Network can be used for intranet or Internet. Phone calls using VoIP has advantages in terms of cheaper cost of PSTN phone to more than half, because the cost is calculated by the cost of the global nature of the Internet. Session Initiation Protocol (SIP) is a signaling protocol at the application layer which serves to establish, modify, and terminate a multimedia session involving one or more users. This SIP signaling has SIP message in text form that is used for session management by the SIP components, such as User Agent, Registrar, Redirect Server, and Proxy Server. To build a SIP communication is required SIP Express Router (SER) to be able to receive SIP messages, for handling the basic functions of SIP messages. Problems occur when the NAT through which affects the voice communication will be blocked starting from the sound that is not sent or one side of the sound are sent (half duplex). How that could be used to penetrate NAT is to use a given mediaproxy random RTP port to penetrate NAT.

A Ring Segmented Bus Architecture for Globally Asynchronous Locally Synchronous System

Recently, most digital systems are designed as GALS (Globally Asynchronous Locally Synchronous) systems. Several architectures have been proposed as bus architectures for a GALS system : shared bus, segmented bus, ring bus, and so on. In this study, we propose a ring segmented bus architecture which is a combination of segmented bus and ring bus architecture with the aim of throughput enhancement. In a segmented bus architecture, segments are connected in series. By connecting the segments at the end of the bus and constructing the ring bus, it becomes possible to allocate a channel of the bus bidirectionally. The bus channel is allocated to the shortest path between segments. We consider a metastable operation caused by asynchronous communication between segments and a burst transfer between segments. According to the result of simulation, it is shown that the GALS system designed by the proposed method has the desired operations.

The Potential of Natural Waste (Corn Husk) for Production of Environmental Friendly Biodegradable Film for Seedling

The use of plastic materials in agriculture causes serious hazards to the environment. The introduction of biodegradable materials, which can be disposed directly into the soil can be one possible solution to this problem. In the present research results of experimental tests carried out on biodegradable film fabricated from natural waste (corn husk) are presented. The film was characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA) and atomic force microscope (AFM) observation. The film is shown to be readily degraded within 7-9 months under controlled soil conditions, indicating a high biodegradability rate. The film fabricated was use to produce biodegradable pot (BioPot) for seedlings plantation. The introduction and the expanding use of biodegradable materials represent a really promising alternative for enhancing sustainable and environmentally friendly agricultural activities.