CoSP2P: A Component-Based Service Model for Peer-to-Peer Systems

The increasing complexity of software development based on peer to peer networks makes necessary the creation of new frameworks in order to simplify the developer-s task. Additionally, some applications, e.g. fire detection or security alarms may require real-time constraints and the high level definition of these features eases the application development. In this paper, a service model based on a component model with real-time features is proposed. The high-level model will abstract developers from implementation tasks, such as discovery, communication, security or real-time requirements. The model is oriented to deploy services on small mobile devices, such as sensors, mobile phones and PDAs, where the computation is light-weight. Services can be composed among them by means of the port concept to form complex ad-hoc systems and their implementation is carried out using a component language called UM-RTCOM. In order to apply our proposals a fire detection application is described.

Harmonic Analysis of 240 V AC Power Supply using TMS320C6713 DSK

The presence of harmonic in power system is a major concerned to power engineers for many years. With the increasing usage of nonlinear loads in power systems, the harmonic pollution becomes more serious. One of the widely used computation algorithm for harmonic analysis is fast Fourier transform (FFT). In this paper, a harmonic analyzer using FFT was implemented on TMS320C6713 DSK. The supply voltage of 240 V 59 Hz is stepped down to 5V using a voltage divider in order to match the power rating of the DSK input. The output from the DSK was displayed on oscilloscope and Code Composer Studio™ software. This work has demonstrated the possibility of analyzing the 240V power supply harmonic content using the DSK board.

RFU Based Computational Unit Design For Reconfigurable Processors

Fully customized hardware based technology provides high performance and low power consumption by specializing the tasks in hardware but lacks design flexibility since any kind of changes require re-design and re-fabrication. Software based solutions operate with software instructions due to which a great flexibility is achieved from the easy development and maintenance of the software code. But this execution of instructions introduces a high overhead in performance and area consumption. In past few decades the reconfigurable computing domain has been introduced which overcomes the traditional trades-off between flexibility and performance and is able to achieve high performance while maintaining a good flexibility. The dramatic gains in terms of chip performance and design flexibility achieved through the reconfigurable computing systems are greatly dependent on the design of their computational units being integrated with reconfigurable logic resources. The computational unit of any reconfigurable system plays vital role in defining its strength. In this research paper an RFU based computational unit design has been presented using the tightly coupled, multi-threaded reconfigurable cores. The proposed design has been simulated for VLIW based architectures and a high gain in performance has been observed as compared to the conventional computing systems.

Enterprise Resource Planning (ERP) System in Higher Education: A Literature Review and Implications

ERP systems are the largest software applications adopted by universities, along with quite significant investments in their implementation. However, unlike other applications little research has been conducted regarding these systems in a university environment. This paper aims at providing a critical review of previous research in ERP system in higher education with a special focus on higher education in Australia. The research not only forms the basis of an evaluation of previous research and research needs, it also makes inroads in identifying the payoff of ERPs in the sector from different perspectives with particular reference to the user. The paper is divided into two parts, the first part focuses on ERP literature in higher education at large, while the second focuses on ERP literature in higher education in Australia.

Flight Control of a Trirotor Mini-UAV for Enhanced Situational Awareness

This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for an unmanned aerial vehicle (UAV). Autonomous vertical flight is a challenging but important task for tactical UAVs to achieve high level of autonomy under adverse conditions. With the SA strategy, we proposed a two stage flight control procedure using two autonomous control subsystems to address the dynamics variation and performance requirement difference in initial and final stages of flight trajectory for a nontrivial nonlinear trirotor mini-UAV model. This control strategy for chosen mini-UAV model has been verified by simulation of hovering maneuvers using software package Simulink and demonstrated good performance for fast SA in realtime search-and-rescue operations.

Ground System Software for Unmanned Aerial Vehicles on Android Device

A Ground Control System (GCS), which controls Unmanned Aerial Vehicles (UAVs) and monitors their missionrelated data, is one of the major components of UAVs. In fact, some traditional GCSs were built on an expensive, complicated hardware infrastructure with workstations and PCs. In contrast, a GCS on a portable device – such as an Android phone or tablet – takes advantage of its light-weight hardware and the rich User Interface supported by the Android Operating System. We implemented that kind of GCS and called it Ground System Software (GSS) in this paper. In operation, our GSS communicates with UAVs or other GSS via TCP/IP connection to get mission-related data, visualizes it on the device-s screen, and saves the data in its own database. Our study showed that this kind of system will become a potential instrument in UAV-related systems and this kind of topic will appear in many research studies in the near future.

Cyber Crime in Uganda: Myth or Reality?

There is a general feeling that Internet crime is an advanced type of crime that has not yet infiltrated developing countries like Uganda. The carefree nature of the Internet in which anybody publishes anything at anytime poses a serious security threat for any nation. Unfortunately, there are no formal records about this type of crime for Uganda. Could this mean that it does not exist there? The author conducted an independent research to ascertain whether cyber crimes have affected people in Uganda and if so, to discover where they are reported. This paper highlights the findings.

B-VIS Service-oriented Middleware for RFID Sensor Network

One of the most importance of intelligence in-car and roadside systems is the cooperative vehicle-infrastructure system. In Thailand, ITS technologies are rapidly growing and real-time vehicle information is considerably needed for ITS applications; for example, vehicle fleet tracking and control and road traffic monitoring systems. This paper defines the communication protocols and software design for middleware components of B-VIS (Burapha Vehicle-Infrastructure System). The proposed B-VIS middleware architecture serves the needs of a distributed RFID sensor network and simplifies some intricate details of several communication standards.

IMLFQ Scheduling Algorithm with Combinational Fault Tolerant Method

Scheduling algorithms are used in operating systems to optimize the usage of processors. One of the most efficient algorithms for scheduling is Multi-Layer Feedback Queue (MLFQ) algorithm which uses several queues with different quanta. The most important weakness of this method is the inability to define the optimized the number of the queues and quantum of each queue. This weakness has been improved in IMLFQ scheduling algorithm. Number of the queues and quantum of each queue affect the response time directly. In this paper, we review the IMLFQ algorithm for solving these problems and minimizing the response time. In this algorithm Recurrent Neural Network has been utilized to find both the number of queues and the optimized quantum of each queue. Also in order to prevent any probable faults in processes' response time computation, a new fault tolerant approach has been presented. In this approach we use combinational software redundancy to prevent the any probable faults. The experimental results show that using the IMLFQ algorithm results in better response time in comparison with other scheduling algorithms also by using fault tolerant mechanism we improve IMLFQ performance.

Control Strategy for an Active Suspension System

The paper presents the virtual model of the active suspension system used for improving the dynamic behavior of a motor vehicle. The study is focused on the design of the control system, the purpose being to minimize the effect of the road disturbances (which are considered as perturbations for the control system). The analysis is performed for a quarter-car model, which corresponds to the suspension system of the front wheel, by using the DFC (Design for Control) software solution EASY5 (Engineering Analysis Systems) of MSC Software. The controller, which is a PIDbased device, is designed through a parametric optimization with the Matrix Algebra Tool (MAT), considering the gain factors as design variables, while the design objective is to minimize the overshoot of the indicial response.

Accent Identification by Clustering and Scoring Formants

There have been significant improvements in automatic voice recognition technology. However, existing systems still face difficulties, particularly when used by non-native speakers with accents. In this paper we address a problem of identifying the English accented speech of speakers from different backgrounds. Once an accent is identified the speech recognition software can utilise training set from appropriate accent and therefore improve the efficiency and accuracy of the speech recognition system. We introduced the Q factor, which is defined by the sum of relationships between frequencies of the formants. Four different accents were considered and experimented for this research. A scoring method was introduced in order to effectively analyse accents. The proposed concept indicates that the accent could be identified by analysing their formants.

Verification of Protocol Design using UML - SMV

In recent past, the Unified Modeling Language (UML) has become the de facto industry standard for object-oriented modeling of the software systems. The syntax and semantics rich UML has encouraged industry to develop several supporting tools including those capable of generating deployable product (code) from the UML models. As a consequence, ensuring the correctness of the model/design has become challenging and extremely important task. In this paper, we present an approach for automatic verification of protocol model/design. As a case study, Session Initiation Protocol (SIP) design is verified for the property, “the CALLER will not converse with the CALLEE before the connection is established between them ". The SIP is modeled using UML statechart diagrams and the desired properties are expressed in temporal logic. Our prototype verifier “UML-SMV" is used to carry out the verification. We subjected an erroneous SIP model to the UML-SMV, the verifier could successfully detect the error (in 76.26ms) and generate the error trace.

An Agent Oriented Approach to Operational Profile Management

Software reliability, defined as the probability of a software system or application functioning without failure or errors over a defined period of time, has been an important area of research for over three decades. Several research efforts aimed at developing models to improve reliability are currently underway. One of the most popular approaches to software reliability adopted by some of these research efforts involves the use of operational profiles to predict how software applications will be used. Operational profiles are a quantification of usage patterns for a software application. The research presented in this paper investigates an innovative multiagent framework for automatic creation and management of operational profiles for generic distributed systems after their release into the market. The architecture of the proposed Operational Profile MAS (Multi-Agent System) is presented along with detailed descriptions of the various models arrived at following the analysis and design phases of the proposed system. The operational profile in this paper is extended to comprise seven different profiles. Further, the criticality of operations is defined using a new composed metrics in order to organize the testing process as well as to decrease the time and cost involved in this process. A prototype implementation of the proposed MAS is included as proof-of-concept and the framework is considered as a step towards making distributed systems intelligent and self-managing.

64 bit Computer Architectures for Space Applications – A study

The more recent satellite projects/programs makes extensive usage of real – time embedded systems. 16 bit processors which meet the Mil-Std-1750 standard architecture have been used in on-board systems. Most of the Space Applications have been written in ADA. From a futuristic point of view, 32 bit/ 64 bit processors are needed in the area of spacecraft computing and therefore an effort is desirable in the study and survey of 64 bit architectures for space applications. This will also result in significant technology development in terms of VLSI and software tools for ADA (as the legacy code is in ADA). There are several basic requirements for a special processor for this purpose. They include Radiation Hardened (RadHard) devices, very low power dissipation, compatibility with existing operational systems, scalable architectures for higher computational needs, reliability, higher memory and I/O bandwidth, predictability, realtime operating system and manufacturability of such processors. Further on, these may include selection of FPGA devices, selection of EDA tool chains, design flow, partitioning of the design, pin count, performance evaluation, timing analysis etc. This project deals with a brief study of 32 and 64 bit processors readily available in the market and designing/ fabricating a 64 bit RISC processor named RISC MicroProcessor with added functionalities of an extended double precision floating point unit and a 32 bit signal processing unit acting as co-processors. In this paper, we emphasize the ease and importance of using Open Core (OpenSparc T1 Verilog RTL) and Open “Source" EDA tools such as Icarus to develop FPGA based prototypes quickly. Commercial tools such as Xilinx ISE for Synthesis are also used when appropriate.

Automation of the Maritime UAV Command, Control, Navigation Operations, Simulated in Real-Time Using Kinect Sensor: A Feasibility Study

This paper describes the process used in the automation of the Maritime UAV commands using the Kinect sensor. The AR Drone is a Quadrocopter manufactured by Parrot [1] to be controlled using the Apple operating systems such as iPhones and Ipads. However, this project uses the Microsoft Kinect SDK and Microsoft Visual Studio C# (C sharp) software, which are compatible with Windows Operating System for the automation of the navigation and control of the AR drone. The navigation and control software for the Quadrocopter runs on a windows 7 computer. The project is divided into two sections; the Quadrocopter control system and the Kinect sensor control system. The Kinect sensor is connected to the computer using a USB cable from which commands can be sent to and from the Kinect sensors. The AR drone has Wi-Fi capabilities from which it can be connected to the computer to enable transfer of commands to and from the Quadrocopter. The project was implemented in C#, a programming language that is commonly used in the automation systems. The language was chosen because there are more libraries already established in C# for both the AR drone and the Kinect sensor. The study will contribute toward research in automation of systems using the Quadrocopter and the Kinect sensor for navigation involving a human operator in the loop. The prototype created has numerous applications among which include the inspection of vessels such as ship, airplanes and areas that are not accessible by human operators.

Estimated Production Potential Types of Wind Turbines Connected to the Network Using Random Numbers Simulation

Nowadays, power systems, energy generation by wind has been very important. Noting that the production of electrical energy by wind turbines on site to several factors (such as wind speed and profile site for the turbines, especially off the wind input speed, wind rated speed and wind output speed disconnect) is dependent. On the other hand, several different types of turbines in the market there. Therefore, selecting a turbine that its capacity could also answer the need for electric consumers the efficiency is high something is important and necessary. In this context, calculating the amount of wind power to help optimize overall network, system operation, in determining the parameters of wind power is very important. In this article, to help calculate the amount of wind power plant, connected to the national network in the region Manjil wind, selecting the best type of turbine and power delivery profile appropriate to the network using Monte Carlo method has been. In this paper, wind speed data from the wind site in Manjil, as minute and during the year has been. Necessary simulations based on Random Numbers Simulation method and repeat, using the software MATLAB and Excel has been done.

Software Architecture and Support for Patient Tracking Systems in Critical Scenarios

In this work a new platform for mobile-health systems is presented. System target application is providing decision support to rescue corps or military medical personnel in combat areas. Software architecture relies on a distributed client-server system that manages a wireless ad-hoc networks hierarchy in which several different types of client operate. Each client is characterized for different hardware and software requirements. Lower hierarchy levels rely in a network of completely custom devices that store clinical information and patient status and are designed to form an ad-hoc network operating in the 2.4 GHz ISM band and complying with the IEEE 802.15.4 standard (ZigBee). Medical personnel may interact with such devices, that are called MICs (Medical Information Carriers), by means of a PDA (Personal Digital Assistant) or a MDA (Medical Digital Assistant), and transmit the information stored in their local databases as well as issue a service request to the upper hierarchy levels by using IEEE 802.11 a/b/g standard (WiFi). The server acts as a repository that stores both medical evacuation forms and associated events (e.g., a teleconsulting request). All the actors participating in the diagnostic or evacuation process may access asynchronously to such repository and update its content or generate new events. The designed system pretends to optimise and improve information spreading and flow among all the system components with the aim of improving both diagnostic quality and evacuation process.

Multi-view Description of Real-Time Systems- Architecture

Real-time embedded systems should benefit from component-based software engineering to handle complexity and deal with dependability. In these systems, applications should not only be logically correct but also behave within time windows. However, in the current component based software engineering approaches, a few of component models handles time properties in a manner that allows efficient analysis and checking at the architectural level. In this paper, we present a meta-model for component-based software description that integrates timing issues. To achieve a complete functional model of software components, our meta-model focuses on four functional aspects: interface, static behavior, dynamic behavior, and interaction protocol. With each aspect we have explicitly associated a time model. Such a time model can be used to check a component-s design against certain properties and to compute the timing properties of component assemblies.

Software Industrialization in Systems Integration

Today-s economy is in a permanent change, causing merger and acquisitions and co operations between enterprises. As a consequence, process adaptations and realignments result in systems integration and software development projects. Processes and procedures to execute such projects are still reliant on craftsman-ship of highly skilled workers. A generally accepted, industrialized production, characterized by high efficiency and quality, seems inevitable. In spite of this, current concepts of software industrialization are aimed at traditional software engineering and do not consider the characteristics of systems integration. The present work points out these particularities and discusses the applicability of existing industrial concepts in the systems integration domain. Consequently it defines further areas of research necessary to bring the field of systems integration closer to an industrialized production, allowing a higher efficiency, quality and return on investment.

Client Server System for e-Services Access Using Mobile Communications Networks

The client server systems using mobile communications networks for data transmission became very attractive for many economic agents, in the purpose of promoting and offering electronic services to their clients. E-services are suitable for business developing and financial benefits increasing. The products or services can be efficiently delivered to a large number of clients, using mobile Internet access technologies. The clients can have access to e-services, anywhere and anytime, with the support of 3G, GPRS, WLAN, etc., channels bandwidth, data services and protocols. Based on the mobile communications networks evolution and development, a convergence of technological and financial interests of mobile operators, software developers, mobile terminals producers and e-content providers is established. These will lead to a high level of integration of IT&C resources and will facilitate the value added services delivery through the mobile communications networks. In this paper it is presented a client server system, for e-services access, with Smartphones and PDA-s mobile software applications, installed on Symbian and Windows Mobile operating systems.