Application of Kansei Engineering and Association Rules Mining in Product Design

The Kansei engineering is a technology which converts human feelings into quantitative terms and helps designers develop new products that meet customers- expectation. Standard Kansei engineering procedure involves finding relationships between human feelings and design elements of which many researchers have found forward and backward relationship through various soft computing techniques. In this paper, we proposed the framework of Kansei engineering linking relationship not only between human feelings and design elements, but also the whole part of product, by constructing association rules. In this experiment, we obtain input from emotion score that subjects rate when they see the whole part of the product by applying semantic differentials. Then, association rules are constructed to discover the combination of design element which affects the human feeling. The results of our experiment suggest the pattern of relationship of design elements according to human feelings which can be derived from the whole part of product.

High Optical Properties and Rectifying Behavior of ZnO (Nano and Microstructures)/Si Heterostructures

We investigated a modified thermal evaporation method in the growth process of ZnO nanowires. ZnO nanowires were fabricated on p-type silicon substrates without using a metal catalyst. A simple horizontal double-tube system along with chemical vapor diffusion of the precursor was used to grow the ZnO nanowires. The substrates were placed in different temperature zones, and ZnO nanowires with different diameters were obtained for the different substrate temperatures. In addition to the nanowires, ZnO microdiscs with different diameters were obtained on another substrate, which was placed at a lower temperature than the other substrates. The optical properties and crystalline quality of the ZnO nanowires and microdiscs were characterized by room temperature photoluminescence (PL) and Raman spectrometers. The PL and Raman studies demonstrated that the ZnO nanowires and microdiscs grown using such set-up had good crystallinity with excellent optical properties. Rectifying behavior of ZnO/Si heterostructures was characterized by a simple DC circuit.

Estimating the Costs of Conservation in Multiple Output Agricultural Setting

Scarcity of resources for biodiversity conservation gives rise to the need of strategic investment with priorities given to the cost of conservation. While the literature provides abundant methodological options for biodiversity conservation; estimating true cost of conservation remains abstract and simplistic, without recognising dynamic nature of the cost. Some recent works demonstrate the prominence of economic theory to inform biodiversity decisions, particularly on the costs and benefits of biodiversity however, the integration of the concept of true cost into biodiversity actions and planning are very slow to come by, and specially on a farm level. Conservation planning studies often use area as a proxy for costs neglecting different land values as well as protected areas. These literature consider only heterogeneous benefits while land costs are considered homogenous. Analysis with the assumption of cost homogeneity results in biased estimation; since not only it doesn’t address the true total cost of biodiversity actions and plans, but also it fails to screen out lands that are more (or less) expensive and/or difficult (or more suitable) for biodiversity conservation purposes, hindering validity and comparability of the results. Economies of scope” is one of the other most neglected aspects in conservation literature. The concept of economies of scope introduces the existence of cost complementarities within a multiple output production system and it suggests a lower cost during the concurrent production of multiple outputs by a given farm. If there are, indeed, economies of scope then simplistic representation of costs will tend to overestimate the true cost of conservation leading to suboptimal outcomes. The aim of this paper, therefore, is to provide first road review of the various theoretical ways in which economies of scope are likely to occur of how they might occur in conservation. Consequently, the paper addresses gaps that have to be filled in future analysis.

Event Template Generation for News Articles

In this paper we focus on event extraction from Tamil news article. This system utilizes a scoring scheme for extracting and grouping event-specific sentences. Using this scoring scheme eventspecific clustering is performed for multiple documents. Events are extracted from each document using a scoring scheme based on feature score and condition score. Similarly event specific sentences are clustered from multiple documents using this scoring scheme. The proposed system builds the Event Template based on user specified query. The templates are filled with event specific details like person, location and timeline extracted from the formed clusters. The proposed system applies these methodologies for Tamil news articles that have been enconverted into UNL graphs using a Tamil to UNL-enconverter. The main intention of this work is to generate an event based template.

A Novel Steganographic Method for Gray-Level Images

In this work we propose a novel Steganographic method for hiding information within the spatial domain of the gray scale image. The proposed approach works by dividing the cover into blocks of equal sizes and then embeds the message in the edge of the block depending on the number of ones in left four bits of the pixel. The proposed approach is tested on a database consists of 100 different images. Experimental results, compared with other methods, showed that the proposed approach hide more large information and gave a good visual quality stego-image that can be seen by human eyes.

Comparison of Proximate Compositions, Resistant Starch Content, and Pasting Properties of Different Colored Cowpeas (Vigna unguiculata) and Red Kidney Bean (Phaseolus vulgaris)

Four different colors of cowpeas (Vigna unguiculata) (black, white, red and black/white speckled) and red kidney bean (Phaseolus vulgaris) were used to evaluate proximate compositions, starch content, and pasting properties. There were no significant differences of moisture, protein, ash, fat, and carbohydrate contents of all bean types. The kidney bean had significantly lower amounts of total starch and solubilized starch compared to those of other cowpeas (p ≤ 0.05), whereas the red cowpea and red kidney bean had highest content of resistant starch (9-10%). Decortication indicated no significant effect on the proximate compositions of all samples, but it significantly decreased the resistant starch content in cowpeas and increased the solubilized starch and total starch content in all types of cowpeas. The highest values of pasting properties, generally observed in flours obtained from black and black/white speckled cowpea.

Novel Design and Analysis of a Brake Rotor

Over the course of the past century, the global automotive industry-s stance towards safety has evolved from one of contempt to one nearing reverence. A suspension system that provides safe handling and cornering capabilities can, with the help of an efficient braking system, improve safety to a large extent. The aim of this research is to propose a new automotive brake rotor design and to compare it with automotive vented disk rotor. Static structural and transient thermal analysis have been carried out on the vented disk rotor and proposed rotor designs to evaluate and compare their performance. Finite element analysis was employed for both static structural and transient thermal analysis. Structural analysis was carried out to study the stress and deformation pattern of the rotors under extreme loads. Time varying temperature load was applied on the rotors and the temperature distribution was analysed considering cooling parameters (convection and radiation). This dissertation illustrates the use of Finite Element Methods to examine models, concluding with a comparative study of the proposed rotor design and the conventional vented disk rotor for structural stability and thermal efficiency.

A Novel Approach for Beneficiation and Dewatering of Coal Fines for Indian Coal Preparation Plant

An attempt has been made to beneficiate the Indian coking coal fines by a combination of Spiral, flotation and Oleo Flotation processes. Beneficiation studies were also carried out on - 0.5mm coal fines using flotation and oleo flotation by splitting at size 0.063mm.Size fraction of 0.5mm-0.063mm and -0.063mm size were treated in flotation and Oleo flotation respectively. The washability studies on the fraction 3-0.5 mm indicated that good separation may be achieved when it is fed in a spiral. Combined product of Spiral, Flotation and Oleo Flotation has given a significant yield at acceptable ash%. Studies were also conducted to see the dewatering of combined product by batch type centrifuge. It may further be suggested that combination of different processes may be used to treat the -3 mm fraction in an integrated manner to achieve the yield at the desired ash level. The treatment of the 3/1 mm -0.5 mm size fraction by spiral,-0.5-0.63 mm by conventional froth flotation and - 0.063 fractions by oleo flotation may provide a complete solution of beneficiation and dewatering of coal fines, and can effectively address the environmental problems caused by coal fines.

Sewage Sludge Management in Egypt: Current Status and Perspectives towards a Sustainable Agricultural Use

The present disposal routes of sewage sludge represent a critical environmental issue in Egypt. Recently, there has been an increasing concern about sewage sludge management due to the environmental risks, which resulted from the fast expansion of wastewater treatment plants without equal attention in dealing with the produced sludge. This paper discusses the current situation of sewage sludge management in Egypt presenting a brief overview of the existing wastewater treatment plants, sludge production and characteristics as well as options of beneficial use and potential demand of sewage sludge under Egyptian conditions. The characteristics of sewage sludge are discussed considering the results of own sampling and analysis as well as previous studies. Furthermore, alternative treatment scenarios for sewage sludge, which have been recently developed in Egypt, are discussed and perspectives for a sustainable agricultural use are outlined.

A Design Framework for Event Recommendation in Novice Low-Literacy Communities

The proliferation of user-generated content (UGC) results in huge opportunities to explore event patterns. However, existing event recommendation systems primarily focus on advanced information technology users. Little work has been done to address novice and low-literacy users. The next billion users providing and consuming UGC are likely to include communities from developing countries who are ready to use affordable technologies for subsistence goals. Therefore, we propose a design framework for providing event recommendations to address the needs of such users. Grounded in information integration theory (IIT), our framework advocates that effective event recommendation is supported by systems capable of (1) reliable information gathering through structured user input, (2) accurate sense making through spatial-temporal analytics, and (3) intuitive information dissemination through interactive visualization techniques. A mobile pest management application is developed as an instantiation of the design framework. Our preliminary study suggests a set of design principles for novice and low-literacy users.

Biosorption of Heavy Metals Contaminating the Wonderfonteinspruit Catchment Area using Desmodesmus sp.

A vast array of biological materials, especially algae have received increasing attention for heavy metal removal. Algae have been proven to be cheaper, more effective for the removal of metallic elements in aqueous solutions. A fresh water algal strain was isolated from Zoo Lake, Johannesburg, South Africa and identified as Desmodesmus sp. This paper investigates the efficacy of Desmodesmus sp.in removing heavy metals contaminating the Wonderfonteinspruit Catchment Area (WCA) water bodies. The biosorption data fitted the pseudo-second order and Langmuir isotherm models. The Langmuir maximum uptakes gave the sequence: Mn2+>Ni2+>Fe2+. The best results for kinetic study was obtained in concentration 120 ppm for Fe3+ and Mn2+, whilst for Ni2+ was at 20 ppm, which is about the same concentrations found in contaminated water in the WCA (Fe3+115 ppm, Mn2+ 121 ppm and Ni2+ 26.5 ppm).

Behavior of Cu-WC-Ti Metal Composite Afterusing Planetary Ball Milling

Copper based composites reinforced with WC and Ti particles were prepared using planetary ball-mill. The experiment was designed by using Taguchi technique and milling was carried out in an air for several hours. The powder was characterized before and after milling using the SEM, TEM and X-ray for microstructure and for possible new phases. Microstructures show that milled particles size and reduction in particle size depend on many parameters. The distance d between planes of atoms estimated from X-ray powder diffraction data and TEM image. X-ray diffraction patterns of the milled powder did not show clearly any new peak or energy shift, but the TEM images show a significant change in crystalline structure of corporate on titanium in the composites.

Underwater Interaction of 1064 nm Laser Radiation with Metal Target

Dynamics of laser radiation – metal target interaction in water at 1064 nm by applying Mach-Zehnder interference technique was studied. The mechanism of generating the well developed regime of evaporation of a metal surface and a spherical shock wave in water is proposed. Critical intensities of the NIR for the well developed evaporation of silver and gold targets were determined. Dynamics of shock waves was investigated for earlier (dozens) and later (hundreds) nanoseconds of time. Transparent expanding plasma-vapor-compressed water object was visualized and measured. The thickness of compressed layer of water and pressures behind the front of a shock wave for later time delays were obtained from the optical treatment of interferograms.

Tuning of Thermal FEA Using Krylov Parametric MOR for Subsea Application

A dead leg is a typical subsea production system component. CFD is required to model heat transfer within the dead leg. Unfortunately its solution is time demanding and thus not suitable for fast prediction or repeated simulations. Therefore there is a need to create a thermal FEA model, mimicking the heat flows and temperatures seen in CFD cool down simulations. This paper describes the conventional way of tuning and a new automated way using parametric model order reduction (PMOR) together with an optimization algorithm. The tuned FE analyses replicate the steady state CFD parameters within a maximum error in heat flow of 6 % and 3 % using manual and PMOR method respectively. During cool down, the relative error of the tuned FEA models with respect to temperature is below 5% comparing to the CFD. In addition, the PMOR method obtained the correct FEA setup five times faster than the manually tuned FEA.

Harnessing Replication in Object Allocation

The design of distributed systems involves the partitioning of the system into components or partitions and the allocation of these components to physical nodes. Techniques have been proposed for both the partitioning and allocation process. However these techniques suffer from a number of limitations. For instance object replication has the potential to greatly improve the performance of an object orientated distributed system but can be difficult to use effectively and there are few techniques that support the developer in harnessing object replication. This paper presents a methodological technique that helps developers decide how objects should be allocated in order to improve performance in a distributed system that supports replication. The performance of the proposed technique is demonstrated and tested on an example system.

Image Compression Using Multiwavelet and Multi-Stage Vector Quantization

The existing image coding standards generally degrades at low bit-rates because of the underlying block based Discrete Cosine Transform scheme. Over the past decade, the success of wavelets in solving many different problems has contributed to its unprecedented popularity. Due to implementation constraints scalar wavelets do not posses all the properties such as orthogonality, short support, linear phase symmetry, and a high order of approximation through vanishing moments simultaneously, which are very much essential for signal processing. New class of wavelets called 'Multiwavelets' which posses more than one scaling function overcomes this problem. This paper presents a new image coding scheme based on non linear approximation of multiwavelet coefficients along with multistage vector quantization. The performance of the proposed scheme is compared with the results obtained from scalar wavelets.

Development of New Control Techniques for Vibration Isolation of Structures using Smart Materials

In this paper, the effects of the restoring force device on the response of a space frame structure resting on sliding type of bearing with a restoring force device is studied. The NS component of the El - Centro earthquake and harmonic ground acceleration is considered for earthquake excitation. The structure is modeled by considering six-degrees of freedom (three translations and three rotations) at each node. The sliding support is modeled as a fictitious spring with two horizontal degrees of freedom. The response quantities considered for the study are the top floor acceleration, base shear, bending moment and base displacement. It is concluded from the study that the displacement of the structure reduces by the use of the restoring force device. Also, the peak values of acceleration, bending moment and base shear also decreases. The simulation results show the effectiveness of the developed and proposed method.

Ec-A: A Task Allocation Algorithm for Energy Minimization in Multiprocessor Systems

With the necessity of increased processing capacity with less energy consumption; power aware multiprocessor system has gained more attention in the recent future. One of the additional challenges that is to be solved in a multi-processor system when compared to uni-processor system is job allocation. This paper presents a novel task dependent job allocation algorithm: Energy centric- Allocation (Ec-A) and Rate Monotonic (RM) scheduling to minimize energy consumption in a multiprocessor system. A simulation analysis is carried out to verify the performance increase with reduction in energy consumption and required number of processors in the system.

A Study on Flammability of Bio Oil Combustible Vapour Mixtures

Study of fire and explosion is very important mainly in oil and gas industries due to several accidents which have been reported in the past and present. In this work, we have investigated the flammability of bio oil vapour mixtures. This mixture may contribute to fire during the storage and transportation process. Bio oil sample derived from Palm Kernell shell was analysed using Gas Chromatography Mass Spectrometry (GC-MS) to examine the composition of the sample. Mole fractions of 12 selected components in the liquid phase were obtained from the GC-FID data and used to calculate mole fractions of components in the gas phase via modified Raoult-s law. Lower Flammability Limits (LFLs) and Upper Flammability Limits (UFLs) for individual components were obtained from published literature. However, stoichiometric concentration method was used to calculate the flammability limits of some components which their flammability limit values are not available in the literature. The LFL and UFL values for the mixture were calculated using the Le Chatelier equation. The LFLmix and UFLmix values were used to construct a flammability diagram and subsequently used to determine the flammability of the mixture. The findings of this study can be used to propose suitable inherently safer method to prevent the flammable mixture from occurring and to minimizing the loss of properties, business, and life due to fire accidents in bio oil productions.

Communication and Quality in Distributed Agile Development: An Empirical Case Study

Through inward perceptions, we intuitively expect distributed software development to increase the risks associated with achieving cost, schedule, and quality goals. To compound this problem, agile software development (ASD) insists one of the main ingredients of its success is cohesive communication attributed to collocation of the development team. The following study identified the degree of communication richness needed to achieve comparable software quality (reduce pre-release defects) between distributed and collocated teams. This paper explores the relevancy of communication richness in various development phases and its impact on quality. Through examination of a large distributed agile development project, this investigation seeks to understand the levels of communication required within each ASD phase to produce comparable quality results achieved by collocated teams. Obviously, a multitude of factors affects the outcome of software projects. However, within distributed agile software development teams, the mode of communication is one of the critical components required to achieve team cohesiveness and effectiveness. As such, this study constructs a distributed agile communication model (DAC-M) for potential application to similar distributed agile development efforts using the measurement of the suitable level of communication. The results of the study show that less rich communication methods, in the appropriate phase, might be satisfactory to achieve equivalent quality in distributed ASD efforts.