Comparing the Behaviour of the FRP and Steel Reinforced Shear Walls under Cyclic Seismic Loading in Aspect of the Energy Dissipation

Earthquakes claim thousands of lives around the world annually due to inadequate design of lateral load resisting systems particularly shear walls. Additionally, corrosion of the steel reinforcement in concrete structures is one of the main challenges in construction industry. Fibre Reinforced Polymer (FRP) reinforcement can be used as an alternative to traditional steel reinforcement. FRP has several excellent mechanical properties than steel such as high resistance to corrosion, high tensile strength and light self-weight; additionally, it has electromagnetic neutrality advantageous to the structures where it is important such as hospitals, some laboratories and telecommunications. This paper is about results of experimental research and it is incorporating experimental testing of two medium-scale concrete shear wall samples; one reinforced with Basalt FRP (BFRP) bar and one reinforced with steel bars as a control sample. The samples are tested under quasi-static-cyclic loading following modified ATC-24 protocol standard seismic loading. The results of both samples are compared to allow a judgement about performance of BFRP reinforced against steel reinforced concrete shear walls. The results of the conducted researches show a promising momentum toward utilisation of the BFRP as an alternative to traditional steel reinforcement with the aim of improving durability with suitable energy dissipation in the reinforced concrete shear walls.  

Modeling and Control of a 4DoF Robotic Assistive Device for Hand Rehabilitation

For those who have lost the ability to move their hand, going through repetitious motions with the assistance of a therapist is the main method of recovery. We have been developed a robotic assistive device to rehabilitate the hand motions in place of the traditional therapy. The developed assistive device (RAD-HR) is comprised of four degrees of freedom enabling basic movements, hand function, and assists in supporting the hand during rehabilitation. We used a nonlinear computed torque control technique to control the RAD-HR. The accuracy of the controller was evaluated in simulations (MATLAB/Simulink environment). To see the robustness of the controller external disturbance as modelling uncertainty (±10% of joint torques) were added in each joints.

Numerical Simulation of Flow Past an Infinite Row of Equispaced Square Cylinders Using the Multi- Relaxation-Time Lattice Boltzmann Method

In this research numerical simulations are performed, using the multi-relaxation-time lattice Boltzmann method, in the range 3 ≤ β = w[d] ≤ 30 at Re = 100, 200 and 300, where β the blockage ratio, w is the equispaced distance between centers of cylinders, d is the diameter of the cylinder and Re is the Reynolds number, respectively. Special attention is paid to the effect of the equispaced distance between centers of cylinders. Visualization of the vorticity contour visualization are presented for some simulation showing the flow dynamics and patterns for blockage effect. Results show that the drag and mean drag coefficients, and Strouhal number, in general, decrease with the increase of β for fixed Re. It is found that the decreasing rate of drag and mean drag coefficients and Strouhal number is more distinct in the range 3 ≤ β ≤ 15. We found that when β > 15, the blockage effect almost diminishes. Our results further indicate that the drag and mean drag coefficients, peak value of the lift coefficient, root-mean-square value of the lift and drag coefficients and the ratio between lift and drag coefficients decrease with the increase of Re. The results indicate that symmetry boundary condition have more blockage effect as compared to periodic boundary condition.

Assessment of Solar Hydrogen Production in an Energetic Hybrid PV-PEMFC System

This paper discusses the design and analysis of a hybrid PV-Fuel cell energy system destined to power a DC load. The system is composed of a photovoltaic array, a fuel cell, an electrolyzer and a hydrogen tank. HOMER software is used in this study to calculate the optimum capacities of the power system components that their combination allows an efficient use of solar resource to cover the hourly load needs. The optimal system sizing allows establishing the right balance between the daily electrical energy produced by the power system and the daily electrical energy consumed by the DC load using a 28 KW PV array, a 7.5 KW fuel cell, a 40KW electrolyzer and a 270 Kg hydrogen tank. The variation of powers involved into the DC bus of the hybrid PV-fuel cell system has been computed and analyzed for each hour over one year: the output powers of the PV array and the fuel cell, the input power of the elctrolyzer system and the DC primary load. Equally, the annual variation of stored hydrogen produced by the electrolyzer has been assessed. The PV array contributes in the power system with 82% whereas the fuel cell produces 18%. 38% of the total energy consumption belongs to the DC primary load while the rest goes to the electrolyzer.

Characterization of ZrO2/PEG Composite Film as Immobilization Matrix for Glucose Oxidase

A biosensor based on glucose oxidase (GOx) immobilized onto nanoparticles zirconium oxide with polyethylene nanocomposite for glucose monitoring has been designed. The CTAB/PEG/ZrO2/GOx nanocomposite was deposited onto screen printed carbon paste (SPCE) electrode via spin coating technique. The properties of CTAB/PEG/ZrO2/GOx were study using scanning electron microscopy (SEM). The SPE modified with the CTAB/PEG/ZrO2/GOx showed electrocatalytical response to the oxidation of glucose when ferrocene carboxaldehyde was used as an artificial redox mediator, which was studied by cyclic voltammetry (CV). Several parameters such as working potential, effect of pH and effect of ZrO2/PEG layers that governed the analytical performance of the biosensor, have been studied. The biosensor was applied to detect glucose with a linear range of 0.4 to 2.0 mmol L−1 with good repetability and reproducibility.

Study on the Effect of Road Infrastructure, Socio-Economic and Demographic Features on Road Crashes in Bangladesh

Road crashes not only claim lives and inflict injuries but also create economic burden to the society due to loss of productivity. The problem of deaths and injuries as a result of road traffic crashes is now acknowledged to be a global phenomenon with authorities in virtually all countries of the world concerned about the growth in the number of people killed and seriously injured on their roads. However, the road crash scenario of a developing country like Bangladesh is much worse comparing with this of developed countries. For developing proper countermeasures it is necessary to identify the factors affecting crash occurrences. The objectives of the study is to examine the effect of district wise road infrastructure, socioeconomic and demographic features on crash occurrence .The unit of analysis will be taken as individual district which has not been explored much in the past. Reported crash data obtained from Bangladesh Road Transport Authority (BRTA) from the year 2004 to 2010 are utilized to develop negative binomial model. The model result will reveal the effect of road length (both paved and unpaved), road infrastructure and several socio economic characteristics on district level crash frequency in Bangladesh.

A New Group Key Management Protocol for Wireless Ad-Hoc Networks

Ad hoc networks are characterized by multi-hop wireless connectivity and frequently changing network topology. Forming security association among a group of nodes in ad-hoc networks is more challenging than in conventional networks due to the lack of central authority, i.e. fixed infrastructure. With that view in mind, group key management plays an important building block of any secure group communication. The main contribution of this paper is a low complexity key management scheme that is suitable for fully self-organized ad-hoc networks. The protocol is also password authenticated, making it resilient against active attacks. Unlike other existing key agreement protocols, ours make no assumption about the structure of the underlying wireless network, making it suitable for “truly ad-hoc" networks. Finally, we will analyze our protocol to show the computation and communication burden on individual nodes for key establishment.