Construction of Large Scale UAVs Using Homebuilt Composite Techniques

The unmanned aerial system (UAS) industry is growing at a rapid pace. This growth has increased the demand for low cost, custom made and high strength unmanned aerial vehicles (UAV). The area of most growth is in the area of 25 kg to 200 kg vehicles. Vehicles this size are beyond the size and scope of simple wood and fabric designs commonly found in hobbyist aircraft. These high end vehicles require stronger materials to complete their mission. Traditional aircraft construction materials such as aluminum are difficult to use without machining or advanced computer controlled tooling. However, by using general aviation composite aircraft homebuilding techniques and materials, a large scale UAV can be constructed cheaply and easily. Furthermore, these techniques could be used to easily manufacture cost made composite shapes and airfoils that would be cost prohibitive when using metals. These homebuilt aircraft techniques are being demonstrated by the researchers in the construction of a 75 kg aircraft.

Suitability of Alternative Insulating Fluid for Power Transformer: A Laboratory Investigation

Power transformer is a vital element in a power system as it continuously regulates power flow, maintaining good voltage regulation. The working of transformer much depends on the oil insulation, the oil insulation also decides the aging of transformer and hence its reliability. The mineral oil based liquid insulation is globally accepted for power transformer insulation; however it is potentially hazardous due to its non-biodegradability. In this work efficient alternative biodegradable insulating fluid is presented as a replacement to conventional mineral oil. Dielectric tests are performed as distinct alternating fluid to evaluate the suitability for transformer insulation. The selection of the distinct natural esters for an insulation system is carried out by the laboratory investigation of Breakdown voltage, Oxidation stability, Dissipation factor, Permittivity, Viscosity, Flash and Fire point. It is proposed to study and characterize the properties of natural esters to be used in power transformer. Therefore for the investigation of the dielectric behavior rice bran oil, sesame oil, and sunflower oil are considered for the study. The investigated results have been compared with the mineral oil to validate the dielectric behavior of natural esters.

Solvent Extraction and Spectrophotometric Determination of Palladium(II) Using P-Methylphenyl Thiourea as a Complexing Agent

A precise, sensitive, rapid and selective method for the solvent extraction, spectrophotometric determination of palladium(II) using para-methylphenyl thiourea (PMPT) as an extractant is developed. Palladium(II) forms yellow colored complex with PMPT which shows an absorption maximum at 300 nm. The colored complex obeys Beer’s law up to 7.0 µg ml-1 of palladium. The molar absorptivity and Sandell’s sensitivity were found to be 8.486 x 103 l mol-1cm-1 and 0.0125 μg cm-2 respectively. The optimum conditions for the extraction and determination of palladium have been established by monitoring the various experimental parameters. The precision of the method has been evaluated and the relative standard deviation has been found to be less than 0.53%. The proposed method is free from interference from large number of foreign ions. The method has been successfully applied for the determination of palladium from alloy, synthetic mixtures corresponding to alloy samples.

Nigerian Football System: Examining Meso-Level Practices against a Global Model for Integrated Development of Mass and Elite Sport

This study was designed to examine mass participation and elite football performance in Nigeria with reference to advance international football management practices. Over 200 sources of literature on sport delivery systems were analyzed to construct a globally applicable model of elite football integrated with mass participation, comprising of the following three levels: macro- (socio-economic, cultural, legislative, and organizational), meso- (infrastructures, personnel, and services enabling sport programs) and micro-level (operations, processes, and methodologies for development of individual athletes). The model has received scholarly validation and showed to be a framework for program analysis that is not culturally bound. The Smolianov and Zakus model has been employed for further understanding of sport systems such as US soccer, US Rugby, swimming, tennis, and volleyball as well as Russian and Dutch swimming. A questionnaire was developed using the above-mentioned model. Survey questions were validated by 12 experts including academicians, executives from sport governing bodies, football coaches, and administrators. To identify best practices and determine areas for improvement of football in Nigeria, 120 coaches completed the questionnaire. Useful exemplars and possible improvements were further identified through semi-structured discussions with 10 Nigerian football administrators and experts. Finally, content analysis of Nigeria Football Federation’s website and organizational documentation was conducted. This paper focuses on the meso-level of Nigerian football delivery, particularly infrastructures, personnel, and services enabling sport programs. This includes training centers, competition systems, and intellectual services. Results identified remarkable achievements coupled with great potential to further develop football in different types of public and private organizations in Nigeria. These include: assimilating football competitions with other cultural and educational activities, providing favorable conditions for employees of all possible organizations to partake and help in managing football programs and events, providing football coaching integrated with counseling for prevention of antisocial conduct, and improving cooperation between football programs and organizations for peace-making and advancement of international relations, tourism, and socio-economic development. Accurate reporting of the sports programs from the media should be encouraged through staff training for better awareness of various events. The systematic integration of these meso-level practices into the balanced development of mass and high-performance football will contribute to international sport success as well as national health, education, and social harmony.

Development of AA2024 Matrix Composites Reinforced with Micro Yttrium through Cold Compaction with Superior Mechanical Properties

In this present work, five different composite samples with AA2024 as matrix and varying amounts of yttrium (0.1-0.5 wt.%) as reinforcement are developed through cold compaction. The microstructures of the developed composite samples revealed that the yttrium reinforcement caused grain refinement up to 0.3 wt.% and beyond which the refinement is not effective. The microstructure revealed Al2Cu precipitation which strengthened the composite up to 0.3 wt.% yttrium reinforcement. Upon further increase in yttrium reinforcement, the intermetallics and the precipitation coarsen and their corresponding strengthening effect decreases. The mechanical characterization revealed that the composite sample reinforced with 0.3 wt.% yttrium showed highest mechanical properties like 82 HV of hardness, 276 MPa Ultimate Tensile Strength (UTS), 229 MPa Yield Strength (YS) and an elongation (EL) of 18.9% respectively. However, the relative density of the developed composites decreased with the increase in yttrium reinforcement.

An Interview and PhotoVoice Exploration of Sexual Education Provision to Women with Physical Disability and Potential Experiences of Violence

This research explored sexual identity for women with physical disability, both congenital and acquired. It also explored whether exposure to violence or negative risk-taking had played a role in their intimate relationships. This phenomenological research used semi-structured interviews and photo elicitation with the researcher’s insider knowledge adding experiential substance and understanding to the discussion. Findings confirm sexuality for women with physical disability is marginalised and de-gendered making it less of a priority for professionals and policy makers and emphasising the need to more effectively support women with disability in relation to their sexuality, sexual expression and violence.

The Effectiveness of Video Clips to Enhance Students’ Achievement and Motivation on History Learning and Facilitation

The purpose of this study is to determine the effectiveness of video clips to enhance students' achievement and motivation towards learning and facilitating of history. We use narrative literature studies to illustrate the current state of the two art and science in focused areas of inquiry. We used experimental method. The experimental method is a systematic scientific research method in which the researchers manipulate one or more variables to control and measure any changes in other variables. For this purpose, two experimental groups have been designed: one experimental and one groups consisting of 30 lower secondary students. The session is given to the first batch using a computer presentation program that uses video clips to be considered as experimental group, while the second group is assigned as the same class using traditional methods using dialogue and discussion techniques that are considered a control group. Both groups are subject to pre and post-trial in matters that are handled by the class. The findings show that the results of the pre-test analysis did not show statistically significant differences, which in turn proved the equality of the two groups. Meanwhile, post-test analysis results show that there was a statistically significant difference between the experimental group and the control group at an importance level of 0.05 for the benefit of the experimental group.

Evaluating Mechanical Properties of CoNiCrAlY Coating from Miniature Specimen Testing at Elevated Temperature

CoNiCrAlY alloys have been widely used as bond coats for thermal barrier coating (TBC) systems because of low cost, improved control of composition, and the feasibility to tailor the coatings microstructures. Coatings are in general very thin structures, and therefore it is impossible to characterize the mechanical responses of the materials via conventional mechanical testing methods. Due to this reason, miniature specimen testing methods, such as the small punch test technique, have been developed. This paper presents some of the recent research in evaluating the mechanical properties of the CoNiCrAlY coatings at room and high temperatures, through the use of small punch testing and the developed miniature specimen tensile testing, applicable to a range of temperature, to investigate the elastic-plastic and creep behavior as well as ductile-brittle transition temperature (DBTT) behavior. An inverse procedure was developed to derive the mechanical properties from such tests for the coating materials. A two-layer specimen test method is also described. The key findings include: 1) the temperature-dependent coating properties can be accurately determined by the miniature tensile testing within a wide range of temperature; 2) consistent DBTTs can be identified by both the SPT and miniature tensile tests (~ 650 °C); and 3) the FE SPT modelling has shown good capability of simulating the early local cracking. In general, the temperature-dependent material behaviors of the CoNiCrAlY coating has been effectively characterized using miniature specimen testing and inverse method.

Detailed Sensitive Detection of Impurities in Waste Engine Oils Using Laser Induced Breakdown Spectroscopy, Rotating Disk Electrode Optical Emission Spectroscopy and Surface Plasmon Resonance

The laser based high resolution spectroscopic experimental techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Rotating Disk Electrode Optical Emission spectroscopy (RDE-OES) and Surface Plasmon Resonance (SPR) have been used for the study of composition and degradation analysis of used engine oils. Engine oils are mainly composed of aliphatic and aromatics compounds and its soot contains hazardous components in the form of fine, coarse and ultrafine particles consisting of wear metal elements. Such coarse particulates matter (PM) and toxic elements are extremely dangerous for human health that can cause respiratory and genetic disorder in humans. The combustible soot from thermal power plants, industry, aircrafts, ships and vehicles can lead to the environmental and climate destabilization. It contributes towards global pollution for land, water, air and global warming for environment. The detection of such toxicants in the form of elemental analysis is a very serious issue for the waste material management of various organic, inorganic hydrocarbons and radioactive waste elements. In view of such important points, the current study on used engine oils was performed. The fundamental characterization of engine oils was conducted by measuring water content and kinematic viscosity test that proves the crude analysis of the degradation of used engine oils samples. The microscopic quantitative and qualitative analysis was presented by RDE-OES technique which confirms the presence of elemental impurities of Pb, Al, Cu, Si, Fe, Cr, Na and Ba lines for used waste engine oil samples in few ppm. The presence of such elemental impurities was confirmed by LIBS spectral analysis at various transition levels of atomic line. The recorded transition line of Pb confirms the maximum degradation which was found in used engine oil sample no. 3 and 4. Apart from the basic tests, the calculations for dielectric constants and refractive index of the engine oils were performed via SPR analysis.

Developing a Web-Based Tender Evaluation System Based on Fuzzy Multi-Attributes Group Decision Making for Nigerian Public Sector Tendering

Public sector tendering has traditionally been conducted using manual paper-based processes which are known to be inefficient, less transparent and more prone to manipulations and errors. The advent of the Internet and the World Wide Web has led to the development of numerous e-Tendering systems that addressed some of the problems associated with the manual paper-based tendering system. However, most of these systems rarely support the evaluation of tenders and where they do it is mostly based on the single decision maker which is not suitable in public sector tendering, where for the sake of objectivity, transparency, and fairness, it is required that the evaluation is conducted through a tender evaluation committee. Currently, in Nigeria, the public tendering process in general and the evaluation of tenders, in particular, are largely conducted using manual paper-based processes. Automating these manual-based processes to digital-based processes can help in enhancing the proficiency of public sector tendering in Nigeria. This paper is part of a larger study to develop an electronic tendering system that supports the whole tendering lifecycle based on Nigerian procurement law. Specifically, this paper presents the design and implementation of part of the system that supports group evaluation of tenders based on a technique called fuzzy multi-attributes group decision making. The system was developed using Object-Oriented methodologies and Unified Modelling Language and hypothetically applied in the evaluation of technical and financial proposals submitted by bidders. The system was validated by professionals with extensive experiences in public sector procurement. The results of the validation showed that the system called NPS-eTender has an average rating of 74% with respect to correct and accurate modelling of the existing manual tendering domain and an average rating of 67.6% with respect to its potential to enhance the proficiency of public sector tendering in Nigeria. Thus, based on the results of the validation, the automation of the evaluation process to support tender evaluation committee is achievable and can lead to a more proficient public sector tendering system.

Classification of Health Risk Factors to Predict the Risk of Falling in Older Adults

Cognitive decline and frailty is apparent in older adults leading to an increased likelihood of the risk of falling. Currently health care professionals have to make professional decisions regarding such risks, and hence make difficult decisions regarding the future welfare of the ageing population. This study uses health data from The Irish Longitudinal Study on Ageing (TILDA), focusing on adults over the age of 50 years, in order to analyse health risk factors and predict the likelihood of falls. This prediction is based on the use of machine learning algorithms whereby health risk factors are used as inputs to predict the likelihood of falling. Initial results show that health risk factors such as long-term health issues contribute to the number of falls. The identification of such health risk factors has the potential to inform health and social care professionals, older people and their family members in order to mitigate daily living risks.

Morphological and Electrical Characterization of Polyacrylonitrile Nanofibers Synthesized Using Electrospinning Method for Electrical Application

Electrospinning is the most widely utilized method to create nanofibers because of the direct setup, the capacity to mass-deliver consistent nanofibers from different polymers, and the ability to produce ultrathin fibers with controllable diameters. Smooth and much arranged ultrafine Polyacrylonitrile (PAN) nanofibers with diameters going from submicron to nanometer were delivered utilizing Electrospinning technique. PAN powder was used as a precursor to prepare the solution utilized as a part of this process. At the point when the electrostatic repulsion contradicted surface tension, a charged stream of polymer solution was shot out from the head of the spinneret and along these lines ultrathin nonwoven fibers were created. The effect of electrospinning parameter such as applied voltage, feed rate, concentration of polymer solution and tip to collector distance on the morphology of electrospun PAN nanofibers were investigated. The nanofibers were heat treated for carbonization to examine the changes in properties and composition to make for electrical application. Scanning Electron Microscopy (SEM) was performed before and after carbonization to study electrical conductivity and morphological characterization. The SEM images have shown the uniform fiber diameter and no beads formation. The average diameter of the PAN fiber observed 365nm and 280nm for flat plat and rotating drum collector respectively. The four probe strategy was utilized to inspect the electrical conductivity of the nanofibers and the electrical conductivity is significantly improved with increase in oxidation temperature exposed.

A Composite Developed from a Methyl Methacrylate and Embedded Eppawala Hydroxyapatite for Orthopedics

This study aimed to find out chemical and structural suitability of synthesized eppawala hydroxyapatite composite as bone cement, by comparing and contrasting it with human bone as well as commercially available bone cement, which is currently used in orthopedic surgeries. Therefore, a mixture of commercially available bone cement and its liquid monomer, commercially available methyl methacrylate (MMA) and a mixture of solid state synthesized eppawala hydroxyapatite powder with commercially available MMA were prepared as the direct substitution for bone cement. Then physical and chemical properties including composition, crystallinity, presence of functional groups, thermal stability, surface morphology, and microstructural features were examined compared to human bone. Results show that there is a close similarity between synthesized product and human bone and it has exhibited high thermal stability, good crystalline and porous properties than the commercial product. Finally, the study concluded that synthesized hydroxyapatite composite can be used directly as a substitution for commercial bone cement.

Application of Neural Network in Portfolio Product Companies: Integration of Boston Consulting Group Matrix and Ansoff Matrix

This study aims to explore the joint application of both Boston and Ansoff matrices in the operational development of the product. We conduct deep analysis, by utilizing the Artificial Neural Network, to predict the position of the product in the market while the company is interested in increasing its share. The data are gathered from two industries, called hygiene and detergent. In doing so, the effort is being made by investigating the behavior of top player companies and, recommend strategic orientations. In conclusion, this combination analysis is appropriate for operational development; as well, it plays an important role in providing the position of the product in the market for both hygiene and detergent industries. More importantly, it will elaborate on the company’s strategies to increase its market share related to a combination of the Boston Consulting Group (BCG) Matrix and Ansoff Matrix.

The U.S. Missile Defense Shield and Global Security Destabilization: An Inconclusive Link

Missile proliferation and global stability are intrinsically linked. Missile threats continually appear at the forefront of global security issues. North Korea’s recently demonstrated nuclear and intercontinental ballistic missile (ICBM) capabilities, for the first time since the Cold War, renewed public interest in strategic missile defense capabilities. To protect from limited ICBM attacks from so-called rogue actors, the United States developed the Ground-based Midcourse Defense (GMD) system. This study examines if the GMD missile defense shield has contributed to a safer world or triggered a new arms race. Based upon increased missile-related developments and the lack of adherence to international missile treaties, it is generally perceived that the GMD system is a destabilizing factor for global security. By examining the current state of arms control treaties as well as existing missile arsenals and ongoing efforts in technologies to overcome U.S. missile defenses, this study seeks to analyze the contribution of GMD to global stability. A thorough investigation cannot ignore that, through the establishment of this limited capability, the U.S. violated longstanding, successful weapons treaties and caused concern among states that possess ICBMs. GMD capability contributes to the perception that ICBM arsenals could become ineffective, creating an imbalance in favor of the United States, leading to increased global instability and tension. While blame for the deterioration of global stability and non-adherence to arms control treaties is often placed on U.S. missile defense, the facts do not necessarily support this view. The notion of a renewed arms race due to GMD is supported neither by current missile arsenals nor by the inevitable development of new and enhanced missile technology, to include multiple independently targeted reentry vehicles (MIRVs), maneuverable reentry vehicles (MaRVs), and hypersonic glide vehicles (HGVs). The methodology in this study encapsulates a period of time, pre- and post-GMD introduction, while analyzing international treaty adherence, missile counts and types, and research in new missile technologies. The decline in international treaty adherence, coupled with a measurable increase in the number and types of missiles or research in new missile technologies during the period after the introduction of GMD, could be perceived as a clear indicator of GMD contributing to global instability. However, research into improved technology (MIRV, MaRV and HGV) prior to GMD, as well as a decline of various global missile inventories and testing of systems during this same period, would seem to invalidate this theory. U.S. adversaries have exploited the perception of the U.S. missile defense shield as a destabilizing factor as a pretext to strengthen and modernize their militaries and justify their policies. As a result, it can be concluded that global stability has not significantly decreased due to GMD; but rather, the natural progression of technological and missile development would inherently include innovative and dynamic approaches to target engagement, deterrence, and national defense.

Optimization of a Bioremediation Strategy for an Urban Stream of Matanza-Riachuelo Basin

In the present work, a remediation bioprocess based on the use of a local isolate of the microalgae Chlorella vulgaris immobilized in alginate beads is proposed. This process was shown to be effective for the reduction of several chemical and microbial contaminants present in Cildáñez stream, a water course that is part of the Matanza-Riachuelo Basin (Buenos Aires, Argentina). The bioprocess, involving the culture of the microalga in autotrophic conditions in a stirred-tank bioreactor supplied with a marine propeller for 6 days, allowed a significant reduction of Escherichia coli and total coliform numbers (over 95%), as well as of ammoniacal nitrogen (96%), nitrates (86%), nitrites (98%), and total phosphorus (53%) contents. Pb content was also significantly diminished after the bioprocess (95%). Standardized cytotoxicity tests using Allium cepa seeds and Cildáñez water pre- and post-remediation were also performed. Germination rate and mitotic index of onion seeds imbibed in Cildáñez water subjected to the bioprocess was similar to that observed in seeds imbibed in distilled water and significantly superior to that registered when untreated Cildáñez water was used for imbibition. Our results demonstrate the potential of this simple and cost-effective technology to remove urban-water contaminants, offering as an additional advantage the possibility of an easy biomass recovery, which may become a source of alternative energy.

dynr.mi: An R Program for Multiple Imputation in Dynamic Modeling

Assessing several individuals intensively over time yields intensive longitudinal data (ILD). Even though ILD provide rich information, they also bring other data analytic challenges. One of these is the increased occurrence of missingness with increased study length, possibly under non-ignorable missingness scenarios. Multiple imputation (MI) handles missing data by creating several imputed data sets, and pooling the estimation results across imputed data sets to yield final estimates for inferential purposes. In this article, we introduce dynr.mi(), a function in the R package, Dynamic Modeling in R (dynr). The package dynr provides a suite of fast and accessible functions for estimating and visualizing the results from fitting linear and nonlinear dynamic systems models in discrete as well as continuous time. By integrating the estimation functions in dynr and the MI procedures available from the R package, Multivariate Imputation by Chained Equations (MICE), the dynr.mi() routine is designed to handle possibly non-ignorable missingness in the dependent variables and/or covariates in a user-specified dynamic systems model via MI, with convergence diagnostic check. We utilized dynr.mi() to examine, in the context of a vector autoregressive model, the relationships among individuals’ ambulatory physiological measures, and self-report affect valence and arousal. The results from MI were compared to those from listwise deletion of entries with missingness in the covariates. When we determined the number of iterations based on the convergence diagnostics available from dynr.mi(), differences in the statistical significance of the covariate parameters were observed between the listwise deletion and MI approaches. These results underscore the importance of considering diagnostic information in the implementation of MI procedures.

Seismic Hazard Assessment of Offshore Platforms

This paper examines the effects of pile-soil-structure interaction on the dynamic response of offshore platforms under the action of near-fault earthquakes. Two offshore platforms models are investigated, one with completely fixed supports and one with piles which are clamped into deformable layered soil. The soil deformability for the second model is simulated using non-linear springs. These platform models are subjected to near-fault seismic ground motions. The role of fault mechanism on platforms’ response is additionally investigated, while the study also examines the effects of different angles of incidence of seismic records on the maximum response of each platform.

Study on the Addition of Solar Generating and Energy Storage Units to a Power Distribution System

Installation of micro-generators based on renewable energy in power distribution system has increased in recent years, with the main renewable sources being solar and wind. Due to the intermittent nature of renewable energy sources, such micro-generators produce time-varying energy which does not correspond at certain times of the day to the peak energy consumption of end users. For this reason, the use of energy storage units next to the grid contributes to the proper leveling of the buses’ voltage level according to Brazilian energy quality standards. In this work, the effect of the addition of a photovoltaic solar generator and a store of energy in the busbar voltages of an electric system is analyzed. The consumption profile is defined as the average hourly use of appliances in a common residence, and the generation profile is defined as a function of the solar irradiation available in a locality. The power summation method is validated with analytical calculation and is used to calculate the modules and angles of the voltages in the buses of an electrical system based on the IEEE standard, at each hour of the day and with defined load and generation profiles. The results show that bus 5 presents the worst voltage level at the power consumption peaks and stabilizes at the appropriate range with the inclusion of the energy storage during the night time period. Solar generator maintains improvement of the voltage level during the period when it receives solar irradiation, having peaks of production during the 12 pm (without exceeding the appropriate maximum levels of tension).

Comparing the Efficiency of Simpson’s 1/3 and 3/8 Rules for the Numerical Solution of First Order Volterra Integro-Differential Equations

This paper compared the efficiency of Simpson’s 1/3 and 3/8 rules for the numerical solution of first order Volterra integro-differential equations. In developing the solution, collocation approximation method was adopted using the shifted Legendre polynomial as basis function. A block method approach is preferred to the predictor corrector method for being self-starting. Experimental results confirmed that the Simpson’s 3/8 rule is more efficient than the Simpson’s 1/3 rule.