Abstract: This paper is aimed to bring new elements that demonstrate the tide caused the groundwater to rise in the shoreline band, on which the urban areas occurs, especially in the western coastal cities of the Kingdom of Saudi Arabia like Jeddah. The reason for the last events of Jeddah inundation was the groundwater rise in the city coupled at the same time to a strong precipitation event. This paper will illustrate the tide participation in increasing the groundwater level significantly. It shows that the reason for internal groundwater recharge within the urban area is not only the excess of the water supply coming from surrounding areas, due to the human activity, with lack of sufficient and efficient sewage system, but also due to tide effect. The research study follows a quantitative method to assess groundwater level rise risks through many in-situ measurements and mathematical modelling. The proposed approach highlights groundwater level, in the urban areas of the city on the shoreline band, reaching the high tide level without considering any input from precipitation. Despite the small tide in the Red Sea compared to other oceanic coasts, the groundwater level is considerably enhanced by the tide from the seaside and by the freshwater table from the landside of the city. In these conditions, the groundwater level becomes high in the city and prevents the soil to evacuate quickly enough the surface flow caused by the storm event, as it was observed in the last historical flood catastrophe of Jeddah in 2009.
Abstract: Zagros mountain range is a very important precipitation zone in Iran as it receives high average annual precipitation compared to other parts of this country. Although this region is important precipitation zone in semi-arid an arid country like Iran, accurate method to study water resources in this region has not been applied yet. In this study, stable isotope δ18O content of precipitation and groundwater resources showed spatial variations across Zagros region as southern parts of Zagros region showed more enriched isotope values compared to the northern parts. This is normal as southern Zagros region is much drier with higher air temperature and evaporation compared to northern parts. In addition, the spatial variations of stable isotope δ18O in precipitation in Zagros region have been simulated by the models which consider the altitude and latitude variations as input to simulate δ18O in precipitation.
Abstract: In review the generalized data about different methods of extraction, separation and purification of natural and modify anthraquinones is presented. The basic regularity of an isolation process is analyzed. Action of temperature, pH, and polarity of extragent, catalysts and other factors on an isolation process is revealed.
Abstract: In this present work, five different composite samples with AA2024 as matrix and varying amounts of yttrium (0.1-0.5 wt.%) as reinforcement are developed through cold compaction. The microstructures of the developed composite samples revealed that the yttrium reinforcement caused grain refinement up to 0.3 wt.% and beyond which the refinement is not effective. The microstructure revealed Al2Cu precipitation which strengthened the composite up to 0.3 wt.% yttrium reinforcement. Upon further increase in yttrium reinforcement, the intermetallics and the precipitation coarsen and their corresponding strengthening effect decreases. The mechanical characterization revealed that the composite sample reinforced with 0.3 wt.% yttrium showed highest mechanical properties like 82 HV of hardness, 276 MPa Ultimate Tensile Strength (UTS), 229 MPa Yield Strength (YS) and an elongation (EL) of 18.9% respectively. However, the relative density of the developed composites decreased with the increase in yttrium reinforcement.
Abstract: The geographical location of Bangladesh makes it one of the most vulnerable countries to climate change. Climate-induced phenomena mainly affect the south-central region of Bangladesh (Laxmipur district) where they have begun to occur more frequently. The aim of the study was to identify the hydro-climatic factors that lead to weather-related disasters in the coastal areas and analyse the consequences of these factors on coastal livelihoods, with possible adaptation options using participatory rural appraisal (PRA) tools. The present study showed several disasters such as land erosion, depressions and cyclones, coastal flooding, storm surge, and precipitation. The frequency of these disasters is of a noticeable rate. Surveys have also discovered that land erosion is ongoing. Tidal water is being introduced directly into the mainland, and as a result of the salt intrusion, production capacity is declining. The coastal belt is an important area for fishing activities, but due to changed fishing times and a lack of Alternative Income Generating Activities (AIGAs), people have been forced to search for alternative livelihood options by taking both short-term and long-term adaptation options. Therefore, in order to increase awareness and minimize the losses, vulnerable communities must be fully incorporated into disaster response strategies. The government as well as national and international donor organizations should come forward and resolve the present situation of these vulnerable groups since otherwise, they will have to endure endless and miserable suffering due to the effects of climate change ahead in their lives.
Abstract: The purpose of this paper was separation and study of the part of structure regime, which directly affects the process of desertification. A simple scheme was prepared for the assessment of desertification process; surface air temperature and precipitation for the years of 1936-2009 were analyzed. The map of distribution of the Desertification Contributing Coefficient in the territory of Georgia was compiled. The simple scheme for identification of the intensity of the desertification contributing process has been developed and the illustrative example of its practical application for the territory of Georgia has been conducted.
Abstract: Tricalcium phosphate (β-Ca3(PO4)2, β-TCP) powders were synthesized using wet polymeric precipitation method for the first time to our best knowledge. The results of X-ray diffraction analysis showed the formation of almost single a Ca-deficient hydroxyapatite (CDHA) phase of a poor crystallinity already at room temperature. With continuously increasing the calcination temperature up to 800 °C, the crystalline β-TCP was obtained as the main phase. It was demonstrated that infrared spectroscopy is very effective method to characterize the formation of β-TCP. The SEM results showed that β-TCP solids were homogeneous having a small particle size distribution. The β-TCP powders consisted of spherical particles varying in size from 100 to 300 nm. Fabricated β-TCP specimens were placed to the bones of the rats and maintained for 1-2 months.
Abstract: Neutralisation of acid-mine drainage (AMD) using limestone is cost effective, and good results can be obtained. However, this process has its limitations; it cannot be used for highly acidic water which consists of Fe(III). When Fe(III) reacts with CaCO3, it results in armoring. Armoring slows the reaction, and additional alkalinity can no longer be generated. Limestone is easily accessible, so this problem can be easily dealt with. Experiments were carried out to evaluate the effect of PVC pipe length on ferric and ferrous ions. It was found that the shorter the pipe length the more these dissolved metals precipitate. The effect of the pipe length on the hydrogen ions was also studied, and it was found that these two have an inverse relationship. Experimental data were further compared with the model prediction data to see if they behave in a similar fashion. The model was able to predict the behaviour of 1.5m and 2 m pipes in ferric and ferrous ion precipitation.
Abstract: We investigated ecotoxicity and performed experiment
for removing ZnO nanoparticles in water. Short term exposure of
hatching test using fertilized eggs (O. latipes) showed deformity in
5ppm of ZnO nanoparticles solution. And in 10ppm ZnO nanoparticles
solution delayed hatching was observed. Hereine, chemical
precipitation method was suggested for removing ZnO nanoparticles
in water. The precipitated ZnO nanoparticles showed the form of ZnS
after addition of Na2S, and the form of Zn3(PO4)2 for Na2HPO4. The
removal efficiency of ZnO nanoparticles in water was closed to 100%
for two cases. In ecotoxicity evaluation of as-precipitated ZnS and
Zn3(PO4)2, they did not cause any acute toxicity for D. magna. It is
noted that this precipitation treatment of ZnO is effective to reduce the
potential cytotoxicity.
Abstract: Studying on the response of vegetation phenology to
climate change at different temporal and spatial scales is important for
understanding and predicting future terrestrial ecosystem dynamics
and the adaptation of ecosystems to global change. In this study, the
Moderate Resolution Imaging Spectroradiometer (MODIS)
Normalized Difference Vegetation Index (NDVI) dataset and climate
data were used to analyze the dynamics of grassland phenology as well
as their correlation with climatic factors in different eco-geographic
regions and elevation units across the Tibetan Plateau. The results
showed that during 2003–2012, the start of the grassland greening
season (SOS) appeared later while the end of the growing season
(EOS) appeared earlier following the plateau’s precipitation and heat
gradients from southeast to northwest. The multi-year mean value of
SOS showed differences between various eco-geographic regions and
was significantly impacted by average elevation and regional average
precipitation during spring. Regional mean differences for EOS were
mainly regulated by mean temperature during autumn. Changes in
trends of SOS in the central and eastern eco-geographic regions were
coupled to the mean temperature during spring, advancing by about
7d/°C. However, in the two southwestern eco-geographic regions,
SOS was delayed significantly due to the impact of spring
precipitation. The results also showed that the SOS occurred later with
increasing elevation, as expected, with a delay rate of 0.66 d/100m.
For 2003–2012, SOS showed an advancing trend in low-elevation
areas, but a delayed trend in high-elevation areas, while EOS was
delayed in low-elevation areas, but advanced in high-elevation areas.
Grassland SOS and EOS changes may be influenced by a variety of
other environmental factors in each eco-geographic region.
Abstract: Iran Central Plateau encompasses a large proportion of this country. The weather in these flat plains is warm and arid with very little precipitation. Different attempts in architecture have been done to alleviate the weather severity of this area and create a living place compatible with humans’ comfort criteria. Investigations have showed that some of the most successful approaches in traditional architecture of the area has been forgotten or are not being used widely. As sustainability is defined as an appropriate solution for environmental, economical, and social disorders, this research is a try to demonstrate the sustainability in aforementioned architecture and based on these studies, propounds solutions for today architecture in hot arid zones.
Abstract: Metal matrix composites consists of a metallic matrix combined with dispersed particulate phase as reinforcement. Aluminum alloys have been the primary material of choice for structural components of aircraft since about 1930. Well known performance characteristics, known fabrication costs, design experience, and established manufacturing methods and facilities, are just a few of the reasons for the continued confidence in 7XXX Al alloys that will ensure their use in significant quantities for the time to come. Particulate MMCs are of special interest owing to the low cost of their raw materials (primarily natural river sand here) and their ease of fabrication, making them suitable for applications requiring relatively high volume production. 7XXX Al alloys are precipitation hardenable and therefore amenable for thermomechanical treatment. Al–Zn alloys reinforced with particulate materials are used in aerospace industries in spite of the drawbacks of susceptibility to stress corrosion, poor wettability, poor weldability and poor fatigue resistance. The resistance offered by these particulates for the moving dislocations impart secondary hardening in turn contributes strain hardening. Cold deformation increases lattice defects, which in turn improves the properties of solution treated alloy. In view of this, six different Al–Zn–Mg alloy composites reinforced with silica (3 wt. % and 5 wt. %) are prepared by conventional semisolid synthesizing process. The cast alloys are solution treated and aged. The solution treated alloys are further severely cold rolled to enhance the properties. The hardness and strength values are analyzed and compared with silica free Al – Zn-Mg alloys. Precipitation hardening phenomena is accelerated due to the increased number of potential sites for precipitation. Higher peak hardness and lesser aging time are the characteristics of thermo mechanically treated samples. For obtaining maximum hardness, optimum number and volume of precipitate particles are required. The Al-5Zn-1Mg with 5% SiO2 alloy composite shows better result.
Abstract: This work presents the first results from the long-term experiment, which is focused on the impact of intensive rainfall and long period of drought on microbial activities in soil. Fifteen lysimeters were prepared in the area of our interest. This area is a protection zone of underground source of drinking water. These lysimeters were filed with topsoil and subsoil collected in this area and divided into two groups. These groups differ in fertilization and amount of water received during the growing season. Amount of microbial biomass and leaching of mineral nitrogen and phosphates were chosen as main indicators of microbial activities in soil. Content of mineral nitrogen and phosphates was measured in soil solution, which was collected from each lysimeters. Amount of microbial biomass was determined in soil samples that were taken from the lysimeters before and after the long period of drought and intensive rainfall.
Abstract: Drought is one of the most damaging climate-related
hazards, it is generally considered as a prolonged absence of
precipitation. This normal and recurring climate phenomenon had
plagued civilization throughout history because of the negative
impacts on economical, environmental and social sectors. Drought
characteristics are thus recognized as important factors in water
resources planning and management. The purpose of this study is to
detect the changes in drought frequency, persistence and severity
in the Ruhr river basin. The frequency of drought events was
calculated using the Standardized Precipitation Index (SPI). Used
data are daily precipitation records from seven meteorological
stations covering the period 1961-2007. The main benefit of the
application of this index is its versatility, only rainfall data is required
to deliver five major dimensions of a drought : duration, intensity,
severity, magnitude, and frequency. Furthermore, drought can be
calculated in different time steps. In this study SPI was calculated for
1, 3, 6, 9, 12, and 24 months. Several drought events were detected
in the covered period, these events contain mild, moderate and severe
droughts. Also positive and negative trends in the SPI values were
observed.
Abstract: Iran has diverse climates and each have established distinct properties in their area. The extent and intensity of climatic factors effects on the lives of people living in various regions of Iran is so great that it cannot be simply ignored. In a large part of Iran known as the Central Plateau there is no precipitation for more than half of the year and dry weather and scarcity of fresh water pose an ever present problem for the people of these regions while in north of Iran upon the southern shores of the Caspian Sea the people face 80% humidity caused by the sea and 2 meters of annual precipitation. This article tries to review the past experiences of local architecture of Iran-s various regions so that they can be used to reshape and redirect the urban areas and structure of Iran-s current cities to provide environmental comfort by minimum use of fossil fuels.
Abstract: Permeability reduction induced by asphaltene
precipitation during gas injection is one of the serious problems in
the oil industry. This problem can lead to formation damage and
decrease the oil production rate. In this work, Malaysian light oil
sample has been used to investigate the effect CO2 injection and
Water Alternating Gas (WAG) injection on permeability reduction.
In this work, dynamic core flooding experiments were conducted to
study the effect of CO2 and WAG injection on the amount of
asphaltene precipitated. Core properties after displacement were
inspected for any permeability reduction to study the effect of
asphaltene precipitation on rock properties.
The results showed that WAG injection gave less asphaltene
precipitation and formation damage compared to CO2 injection. The
study suggested that WAG injection can be one of the important
factors of managing asphaltene precipitation.
Abstract: Silver/polylactide nanocomposites (Ag/PLA-NCs) were
synthesized via chemical reduction method in diphase solvent. Silver
nitrate and sodium borohydride were used as a silver precursor
and reducing agent in the polylactide (PLA). The properties of
Ag/PLA-NCs were studied as a function of the weight percentages
of silver nanoparticles (8, 16 and 32 wt% of Ag-NPs) relative to
the weight of PLA. The Ag/PLA-NCs were characterized by Xray
diffraction (XRD), transmission electron microscopy (TEM),
electro-optical microscopy (EOM), UV-visible spectroscopy (UV-vis)
and Fourier transform infrared spectroscopy (FT-IR). XRD patterns
confirmed that Ag-NPs crystallographic planes were face centered
cubic (fcc) type. TEM images showed that mean diameters of Ag-NPs
were 3.30, 3.80 and 4.80 nm. Electro-optical microscopy revealed
excellent dispersion and interaction between Ag-NPs and PLA films.
The generation of silver nanoparticles was confirmed from the UVvisible
spectra. FT-IR spectra showed that there were no significant
differences between PLA and Ag/PLA-NCs films. The synthesized
Ag/PLA-NCs were stable in organic solution over a long period of
time without sign of precipitation.
Abstract: In this research, CaO-ZnO catalysts (with various
Ca:Zn atomic ratios of 1:5, 1:3, 1:1, and 3:1) prepared by incipientwetness
impregnation (IWI) and co-precipitation (CP) methods were
used as a catalyst in the transesterification of palm oil with methanol
for biodiesel production. The catalysts were characterized by several
techniques, including BET method, CO2-TPD, and Hemmett
Indicator. The effects of precursor concentration, and calcination
temperature on the catalytic performance were studied under reaction
conditions of a 15:1 methanol to oil molar ratio, 6 wt% catalyst,
reaction temperature of 60°C, and reaction time of 8 h. At Ca:Zn
atomic ratio of 1:3 gave the highest FAME value owing to a basic
properties and surface area of the prepared catalyst.
Abstract: There are two types of drought as conceptual drought
and operational drought. The three parameters as the beginning, the
end and the degree of severity of the drought can be identifying in
operational drought by average precipitation in the whole region. One
of the methods classified to measure drought is Reconnaissance
Drought Index (RDI). Evapotranspiration is calculated using
Penman-Monteith method by analyzing thirty nine years prolong
climatic data. The evapotranspiration is then utilized in RDI to
classify normalized and standardized RDI. These RDI classifications
led to what kind of drought faced in Bhavnagar region on 12 month
time scale basis. The comparison between actual drought conditions
and RDI method used to find out drought are also illustrated. It can
be concluded that the index results of drought in a particular year are
same in both methods but having different index values where as
severity remain same.
Abstract: In this work, the precipitation of asphaltene from a Malaysian light oil reservoir was studies. A series of experiments were designed and carried out to examine the effect of CO2 injection on asphaltene precipitation. Different pressures of injections were used in Dynamic flooding experiment in order to investigate the effect of pressure versus injection pore volume of CO2. These dynamic displacement tests simulate reservoir condition. Results show that by increasing the pore volume of injected gas asphaltene precipitation will increases, also rise in injection pressure causes less precipitation. Sandstone core plug was used to represent reservoir formation during displacement test; therefore it made it possible to study the effect of present of asphaltene on formation. It is found out that the precipitated asphaltene can reduce permeability and porosity which is not favorable during oil production.