Abstract: CoNiCrAlY alloys have been widely used as bond coats for thermal barrier coating (TBC) systems because of low cost, improved control of composition, and the feasibility to tailor the coatings microstructures. Coatings are in general very thin structures, and therefore it is impossible to characterize the mechanical responses of the materials via conventional mechanical testing methods. Due to this reason, miniature specimen testing methods, such as the small punch test technique, have been developed. This paper presents some of the recent research in evaluating the mechanical properties of the CoNiCrAlY coatings at room and high temperatures, through the use of small punch testing and the developed miniature specimen tensile testing, applicable to a range of temperature, to investigate the elastic-plastic and creep behavior as well as ductile-brittle transition temperature (DBTT) behavior. An inverse procedure was developed to derive the mechanical properties from such tests for the coating materials. A two-layer specimen test method is also described. The key findings include: 1) the temperature-dependent coating properties can be accurately determined by the miniature tensile testing within a wide range of temperature; 2) consistent DBTTs can be identified by both the SPT and miniature tensile tests (~ 650 °C); and 3) the FE SPT modelling has shown good capability of simulating the early local cracking. In general, the temperature-dependent material behaviors of the CoNiCrAlY coating has been effectively characterized using miniature specimen testing and inverse method.
Abstract: In this work, methods for determining creep properties which can be used to represent the full life until failure from miniature specimen creep tests based on analytical solutions are presented. Examples used to demonstrate the application of the methods include a miniature rectangular thin beam specimen creep test under three-point bending and a miniature two-material tensile specimen creep test subjected to a steady load. Mathematical expressions for deflection and creep strain rate of the two specimens were presented for the Kachanov-Rabotnov creep damage model. On this basis, an inverse procedure was developed which has potential applications for deriving the full life creep damage constitutive properties from a very small volume of material, in particular, for various microstructure constitutive regions, e.g. within heat-affected zones of power plant pipe weldments. Further work on validation and improvement of the method is addressed.
Abstract: This paper describes a new approach which can be
used to interpret the experimental creep deformation data obtained
from miniaturized thin plate bending specimen test to the
corresponding uniaxial data based on an inversed application of the
reference stress method. The geometry of the thin plate is fully
defined by the span of the support, l, the width, b, and the thickness,
d. Firstly, analytical solutions for the steady-state, load-line creep
deformation rate of the thin plates for a Norton’s power law under
plane stress (b→0) and plane strain (b→∞) conditions were obtained,
from which it can be seen that the load-line deformation rate of the
thin plate under plane-stress conditions is much higher than that
under the plane-strain conditions. Since analytical solution is not
available for the plates with random b-values, finite element (FE)
analyses are used to obtain the solutions. Based on the FE results
obtained for various b/l ratios and creep exponent, n, as well as the
analytical solutions under plane stress and plane strain conditions, an
approximate, numerical solutions for the deformation rate are
obtained by curve fitting. Using these solutions, a reference stress
method is utilised to establish the conversion relationships between
the applied load and the equivalent uniaxial stress and between the
creep deformations of thin plate and the equivalent uniaxial creep
strains. Finally, the accuracy of the empirical solution was assessed
by using a set of “theoretical” experimental data.
Abstract: The influence of eccentric discharge of stored solids in
squat silos has been highly valued by many researchers. However,
calculation method of lateral pressure under eccentric flowing still
needs to be deeply studied. In particular, the lateral pressure
distribution on vertical wall could not be accurately recognized
mainly because of its asymmetry. In order to build mechanical model
of lateral pressure, flow channel and flow pattern of stored solids in
squat silo are studied. In this passage, based on Janssen-s theory, the
method for calculating lateral static pressure in squat silos after
eccentric discharge is proposed. Calculative formulae are deduced for
each of three possible cases. This method is also focusing on
unsymmetrical distribution characteristic of silo wall normal
pressure. Finite element model is used to analysis and compare the
results of lateral pressure and the numerical results illustrate the
practicability of the theoretical method.
Abstract: Dynamic Causal Modeling (DCM) functional
Magnetic Resonance Imaging (fMRI) is a promising technique to
study the connectivity among brain regions and effects of stimuli
through modeling neuronal interactions from time-series
neuroimaging. The aim of this study is to study characteristics of a
mirror neuron system (MNS) in elderly group (age: 60-70 years old).
Twenty volunteers were MRI scanned with visual stimuli to study a
functional brain network. DCM was employed to determine the
mechanism of mirror neuron effects. The results revealed major
activated areas including precentral gyrus, inferior parietal lobule,
inferior occipital gyrus, and supplementary motor area. When visual
stimuli were presented, the feed-forward connectivity from visual
area to conjunction area was increased and forwarded to motor area.
Moreover, the connectivity from the conjunction areas to premotor
area was also increased. Such findings can be useful for future
diagnostic process for elderly with diseases such as Parkinson-s and
Alzheimer-s.