Experimental and Statistical Study of Nonlinear Effect of Carbon Nanotube on Mechanical Properties of Polypropylene Composites

In this study concept of experimental design is successfully applied for the determination of optimum condition to produce PP/SWCNT (Polypropylene/Single wall carbon nanotube) nanocomposite. Central composite design as one of experimental design techniques is employed for the optimization and statistical determination of the significant factors influencing on the tensile modulus and yield stress as mechanical properties of this nanocomposite. The significant factors are SWCNT weight fraction and acid treatment time for functionalizing the nanoparticles. Optimum conditions are in 0.7 % of SWCNT weight fraction and 210 min as acid treatment time for 1112.75 ± 28 MPa as maximum tensile modulus and in 216 min and 0.65 % as acid treatment time and SWCNT weight fraction respectively for 40.26 ± 0.3 MPa as maximum yield stress. Also after setting new experiments for test these optimum conditions, found excelent agreement with predicted values.

Identification of Regulatory Mechanism of Orthostatic Response

En bloc assumes modeling all phases of the orthostatic test with the only one mathematical model, which allows the complex parametric view of orthostatic response. The work presents the implementation of a mathematical model for processing of the measurements of systolic, diastolic blood pressure and heart rate performed on volunteers during orthostatic test. The original assumption of model hypothesis that every postural change means only one Stressor, did not complying with the measurements of physiological circulation factor-time profiles. Results of the identification support the hypothesis that second postural change of orthostatic test causes induced Stressors, with the observation of a physiological regulation mechanism. Maximal demonstrations are on the heart rate and diastolic blood pressure-time profile, minimal are for the measurements of the systolic blood pressure. Presented study gives a new view on orthostatic test with impact on clinical practice.

Investigation of New Method to Achieve Well Dispersed Multiwall Carbon Nanotubes Reinforced Al Matrix Composites

Nanostructured materials have attracted many researchers due to their outstanding mechanical and physical properties. For example, carbon nanotubes (CNTs) or carbon nanofibres (CNFs) are considered to be attractive reinforcement materials for light weight and high strength metal matrix composites. These composites are being projected for use in structural applications for their high specific strength as well as functional materials for their exciting thermal and electrical characteristics. The critical issues of CNT-reinforced MMCs include processing techniques, nanotube dispersion, interface, strengthening mechanisms and mechanical properties. One of the major obstacles to the effective use of carbon nanotubes as reinforcements in metal matrix composites is their agglomeration and poor distribution/dispersion within the metallic matrix. In order to tap into the advantages of the properties of CNTs (or CNFs) in composites, the high dispersion of CNTs (or CNFs) and strong interfacial bonding are the key issues which are still challenging. Processing techniques used for synthesis of the composites have been studied with an objective to achieve homogeneous distribution of carbon nanotubes in the matrix. Modified mechanical alloying (ball milling) techniques have emerged as promising routes for the fabrication of carbon nanotube (CNT) reinforced metal matrix composites. In order to obtain a homogeneous product, good control of the milling process, in particular control of the ball movement, is essential. The control of the ball motion during the milling leads to a reduction in grinding energy and a more homogeneous product. Also, the critical inner diameter of the milling container at a particular rotational speed can be calculated. In the present work, we use conventional and modified mechanical alloying to generate a homogenous distribution of 2 wt. % CNT within Al powders. 99% purity Aluminium powder (Acros, 200mesh) was used along with two different types of multiwall carbon nanotube (MWCNTs) having different aspect ratios to produce Al-CNT composites. The composite powders were processed into bulk material by compaction, and sintering using a cylindrical compaction and tube furnace. Field Emission Scanning electron microscopy (FESEM), X-Ray diffraction (XRD), Raman spectroscopy and Vickers macro hardness tester were used to evaluate CNT dispersion, powder morphology, CNT damage, phase analysis, mechanical properties and crystal size determination. Despite the success of ball milling in dispersing CNTs in Al powder, it is often accompanied with considerable strain hardening of the Al powder, which may have implications on the final properties of the composite. The results show that particle size and morphology vary with milling time. Also, by using the mixing process and sonication before mechanical alloying and modified ball mill, dispersion of the CNTs in Al matrix improves.

Packet Forwarding with Multiprotocol Label Switching

MultiProtocol Label Switching (MPLS) is an emerging technology that aims to address many of the existing issues associated with packet forwarding in today-s Internetworking environment. It provides a method of forwarding packets at a high rate of speed by combining the speed and performance of Layer 2 with the scalability and IP intelligence of Layer 3. In a traditional IP (Internet Protocol) routing network, a router analyzes the destination IP address contained in the packet header. The router independently determines the next hop for the packet using the destination IP address and the interior gateway protocol. This process is repeated at each hop to deliver the packet to its final destination. In contrast, in the MPLS forwarding paradigm routers on the edge of the network (label edge routers) attach labels to packets based on the forwarding Equivalence class (FEC). Packets are then forwarded through the MPLS domain, based on their associated FECs , through swapping the labels by routers in the core of the network called label switch routers. The act of simply swapping the label instead of referencing the IP header of the packet in the routing table at each hop provides a more efficient manner of forwarding packets, which in turn allows the opportunity for traffic to be forwarded at tremendous speeds and to have granular control over the path taken by a packet. This paper deals with the process of MPLS forwarding mechanism, implementation of MPLS datapath , and test results showing the performance comparison of MPLS and IP routing. The discussion will focus primarily on MPLS IP packet networks – by far the most common application of MPLS today.

A New Analytical Approach to Reconstruct Residual Stresses Due to Turning Process

A thin layer on the component surface can be found with high tensile residual stresses, due to turning operations, which can dangerously affect the fatigue performance of the component. In this paper an analytical approach is presented to reconstruct the residual stress field from a limited incomplete set of measurements. Airy stress function is used as the primary unknown to directly solve the equilibrium equations and satisfying the boundary conditions. In this new method there exists the flexibility to impose the physical conditions that govern the behavior of residual stress to achieve a meaningful complete stress field. The analysis is also coupled to a least squares approximation and a regularization method to provide stability of the inverse problem. The power of this new method is then demonstrated by analyzing some experimental measurements and achieving a good agreement between the model prediction and the results obtained from residual stress measurement.

The Integrated Management of Health Care Strategies and Differential Diagnosis by Expert System Technology: A Single-Dimensional Approach

The Integrated Management of Child illnesses (IMCI) and the surveillance Health Information Systems (HIS) are related strategies that are designed to manage child illnesses and community practices of diseases. However, both strategies do not function well together because of classification incompatibilities and, as such, are difficult to use by health care personnel in rural areas where a majority of people lack the basic knowledge of interpreting disease classification from these methods. This paper discusses a single approach on how a stand-alone expert system can be used as a prompt diagnostic tool for all cases of illnesses presented. The system combines the action-oriented IMCI and the disease-oriented HIS approaches to diagnose malaria and typhoid fever in the rural areas of the Niger-delta region.

Modernization of the People's Republic of China: History and Complexities

The aim of this paper is to investigate a process of modernization of the People-s Republic of China. The theme of scientific research is interesting, first, because the Chinese model of development is recognized as successful and most dynamically developing. They are obliged by these successes of the modernization spent in the country. Economy modernization as the basic motive power of progress of the country is a priority direction of development in the Republic of Kazakhstan. So the example of successful development modernization processes in China can be rather useful to use in working out of the Kazakhstan national reforms.

Ripper and Sugar Effects on Hydroxymethylfurfural Formation in Gingerbread Biscuits

Hydroxymethylfurfural (HMF) is formed by thermally treating products rich in carbohydrates. HMF and other furan derivatives are toxic. The aim of the research was to establish the content of HMF in gingerbread biscuits with honey and sugar syrup additives by using three leavening agents— ammonium carbonate (NH4HCO3 and (NH4)2CO3), baking powder, and baking soda (NaHCO3). The content of HMF is significantly affected by the leavening agent used. The content of HMF with honey where ammonium carbonate was used as additive range from 5.7 to 27.3mg 100g-1, but when sugar syrup is used the content varies from 2.3 to 7.4mg 100g-1. When baking powder and baking soda are used as leavening agents, the content of HMF exceeds 4mg 100g-1 in the event honey had been added and the baking time had been longer (10 minutes at 180°C or 9 minutes at 200°C).

The Effect of Clamping Restrain on the Prediction of Drape Simulation Software Tool

To investigates the effect of fiberglass clamping process improvement on drape simulation prediction. This has great effect on the mould and the fiber during manufacturing process. This also, improves the fiber strain, the quality of the fiber orientation in the area of folding and wrinkles formation during the press-forming process. Drape simulation software tool was used to digitalize the process, noting the formation problems on the contour sensitive part. This was compared with the real life clamping processes using single and double frame set-ups to observe the effects. Also, restrains are introduced by using clips, and the G-clamps with predetermine revolution to; restrain the fabric deformation during the forming process.The incorporation of clamping and fabric restrain deformation improved on the prediction of the simulation tool. Therefore, for effective forming process, incorporation of clamping process into the drape simulation process will assist in the development of fiberglass application in manufacturing process.

Image Modeling Using Gibbs-Markov Random Field and Support Vector Machines Algorithm

This paper introduces a novel approach to estimate the clique potentials of Gibbs Markov random field (GMRF) models using the Support Vector Machines (SVM) algorithm and the Mean Field (MF) theory. The proposed approach is based on modeling the potential function associated with each clique shape of the GMRF model as a Gaussian-shaped kernel. In turn, the energy function of the GMRF will be in the form of a weighted sum of Gaussian kernels. This formulation of the GMRF model urges the use of the SVM with the Mean Field theory applied for its learning for estimating the energy function. The approach has been tested on synthetic texture images and is shown to provide satisfactory results in retrieving the synthesizing parameters.

Predicting Bankruptcy using Tabu Search in the Mauritian Context

Throughout this paper, a relatively new technique, the Tabu search variable selection model, is elaborated showing how it can be efficiently applied within the financial world whenever researchers come across the selection of a subset of variables from a whole set of descriptive variables under analysis. In the field of financial prediction, researchers often have to select a subset of variables from a larger set to solve different type of problems such as corporate bankruptcy prediction, personal bankruptcy prediction, mortgage, credit scoring and the Arbitrage Pricing Model (APM). Consequently, to demonstrate how the method operates and to illustrate its usefulness as well as its superiority compared to other commonly used methods, the Tabu search algorithm for variable selection is compared to two main alternative search procedures namely, the stepwise regression and the maximum R 2 improvement method. The Tabu search is then implemented in finance; where it attempts to predict corporate bankruptcy by selecting the most appropriate financial ratios and thus creating its own prediction score equation. In comparison to other methods, mostly the Altman Z-Score model, the Tabu search model produces a higher success rate in predicting correctly the failure of firms or the continuous running of existing entities.

Are Asia-Pacific Stock Markets Predictable? Evidence from Wavelet-based Fractional Integration Estimator

This paper examines predictability in stock return in developed and emergingmarkets by testing long memory in stock returns using wavelet approach. Wavelet-based maximum likelihood estimator of the fractional integration estimator is superior to the conventional Hurst exponent and Geweke and Porter-Hudak estimator in terms of asymptotic properties and mean squared error. We use 4-year moving windows to estimate the fractional integration parameter. Evidence suggests that stock return may not be predictable indeveloped countries of the Asia-Pacificregion. However, predictability of stock return insome developing countries in this region such as Indonesia, Malaysia and Philippines may not be ruled out. Stock return in the Thailand stock market appears to be not predictable after the political crisis in 2008.

Transmission Lines Loading Enhancement Using ADPSO Approach

Discrete particle swarm optimization (DPSO) is a powerful stochastic evolutionary algorithm that is used to solve the large-scale, discrete and nonlinear optimization problems. However, it has been observed that standard DPSO algorithm has premature convergence when solving a complex optimization problem like transmission expansion planning (TEP). To resolve this problem an advanced discrete particle swarm optimization (ADPSO) is proposed in this paper. The simulation result shows that optimization of lines loading in transmission expansion planning with ADPSO is better than DPSO from precision view point.

Rheology of Composites with Nature Vegetal Origin Fibers

Conventional materials like glass, wood or metals replacement with polymer materials is still continuing. More simple thus cheaper production is the main reason. However due to high energy and petrochemical prices are polymer prices increasing too. That´s why various kinds of fillers are used to make polymers cheaper. Of course target is to maintain or improve properties of these compounds. In this paper are solved rheology issues of polymers compounded with vegetal origin fibers.

Hydrodynamic Modeling of a Surface Water Treatment Pilot Plant

A mathematical model for the hydrodynamics of a surface water treatment pilot plant was developed and validated by the determination of the residence time distribution (RTD) for the main equipments of the unit. The well known models of ideal/real mixing, ideal displacement (plug flow) and (one-dimensional axial) dispersion model were combined in order to identify the structure that gives the best fitting of the experimental data for each equipment of the pilot plant. RTD experimental results have shown that pilot plant hydrodynamics can be quite well approximated by a combination of simple mathematical models, structure which is suitable for engineering applications. Validated hydrodynamic models will be further used in the evaluation and selection of the most suitable coagulation-flocculation reagents, optimum operating conditions (injection point, reaction times, etc.), in order to improve the quality of the drinking water.

Genetic Comparison of Two Different Arabian Oryx Populations in UAE Based on Microsatellite Analysis

This is a genetic comparison study of Arabian Oryx (Oryx leucoryx) population at two different locations (A &B) based on nuclear microsatellite DNA markers. Arabian Oryx is listed as vulnerable and endanger by the World Conservation Union (IUCN). Thirty microsatellite markers from bovine family were applied to investigate the genetic diversity of the Arabian Oryx and to set up a molecular inventory. Among 30 microsatellite markers used, 13 markers were moderately polymorphic. Arabian Oryx at location A has shown better gene diversity over location B. However, mean number of alleles were less than location B. Data of within population inbreeding coefficient indicates inbreeding at both locations (A&B). Based on the analysis of polymorphic microsatellite markers, the study revealed that Arabian Oryx need a genetically designed breeding program.

Micro Environmental Concrete

Reactive powder concretes (RPC) are characterized by particle diameter not exceeding 600 μm and having very high compressive and tensile strengths. This paper describes a new generation of micro concrete, which has an initial, as well as a final, high physicomechanical performance. To achieve this, we replaced the Portland cement (15% by weight) by materials rich in Silica (Slag and Dune Sand). The results obtained from tests carried out on RPC show that compressive and tensile strengths increase when adding the additions, thus improving the compactness of mixtures via filler and pozzolanic effect. With a reduction of the aggregate phase in the RPC and the abundance of dune sand (south Algeria) and slag (industrial byproduct of blast furnace), the use of the RPC will allow Algeria to fulfil economical as well as ecological requirements.

Multilayer Soft Tissue Continuum Model: Towards Realistic Simulation of Facial Expressions

A biophysically based multilayer continuum model of the facial soft tissue composite has been developed for simulating wrinkle formation. The deformed state of the soft tissue block was determined by solving large deformation mechanics equations using the Galerkin finite element method. The proposed soft tissue model is composed of four layers with distinct mechanical properties. These include stratum corneum, epidermal-dermal layer (living epidermis and dermis), subcutaneous tissue and the underlying muscle. All the layers were treated as non-linear, isotropic Mooney Rivlin materials. Contraction of muscle fibres was approximated using a steady-state relationship between the fibre extension ratio, intracellular calcium concentration and active stress in the fibre direction. Several variations of the model parameters (stiffness and thickness of epidermal-dermal layer, thickness of subcutaneous tissue layer) have been considered.

Automatic Inspection of Percussion Caps by Means of Combined 2D and 3D Machine Vision Techniques

The exhaustive quality control is becoming more and more important when commercializing competitive products in the world's globalized market. Taken this affirmation as an undeniable truth, it becomes critical in certain sector markets that need to offer the highest restrictions in quality terms. One of these examples is the percussion cap mass production, a critical element assembled in firearm ammunition. These elements, built in great quantities at a very high speed, must achieve a minimum tolerance deviation in their fabrication, due to their vital importance in firing the piece of ammunition where they are built in. This paper outlines a machine vision development for the 100% inspection of percussion caps obtaining data from 2D and 3D simultaneous images. The acquisition speed and precision of these images from a metallic reflective piece as a percussion cap, the accuracy of the measures taken from these images and the multiple fabrication errors detected make the main findings of this work.

Analysis of Precipitation Time Series of Urban Centers of Northeastern Brazil using Wavelet Transform

The urban centers within northeastern Brazil are mainly influenced by the intense rainfalls, which can occur after long periods of drought, when flood events can be observed during such events. Thus, this paper aims to study the rainfall frequencies in such region through the wavelet transform. An application of wavelet analysis is done with long time series of the total monthly rainfall amount at the capital cities of northeastern Brazil. The main frequency components in the time series are studied by the global wavelet spectrum and the modulation in separated periodicity bands were done in order to extract additional information, e.g., the 8 and 16 months band was examined by an average of all scales, giving a measure of the average annual variance versus time, where the periods with low or high variance could be identified. The important increases were identified in the average variance for some periods, e.g. 1947 to 1952 at Teresina city, which can be considered as high wet periods. Although, the precipitation in those sites showed similar global wavelet spectra, the wavelet spectra revealed particular features. This study can be considered an important tool for time series analysis, which can help the studies concerning flood control, mainly when they are applied together with rainfall-runoff simulations.