Evaluation Biofilm Sewage Treatment Plant

The research study is carried out to determine the efficiency of the Biofilm sewage treatment plant which is located at the Engineering Complex-s. Wastewater analyses have been carried out at the Environmental Engineering laboratory to study the six parameters: Biochemical Oxygen Demand BOD, Chemical Oxygen Demand COD l, and Total Suspended Solids TSS, Ammoniac Nitrogen NH3-N and Phosphorous P which have been selected to determine the wastewater quality. The plant was designed to treat 750 Pe (population equivalent) at hydraulic retention time of 5 hours in the aerobic zone. The results show that Biofilm wastewater treatment plant was able to treat sewage successfully at different flow condition. The discharge has fulfilled the Malaysia Environmental of Standard A water quality. The achieved BOD removal is more than 85%, COD is more than 80%, TSS is more than 80%, NH3-N is more than 70%, and P was more than 70%. The Biofilm system provides a very efficient process for sewage treatment and it is compact in structure thus minimizes the required land area.

Effect of a Gravel Bed Flocculator on the Efficiency of a Low Cost Water Treatment Plants

The principal objective of a water treatment plant is to produce water that satisfies a set of drinking water quality standards at a reasonable price to the consumers. The gravel-bed flocculator provide a simple and inexpensive design for flocculation in small water treatment plants (less than 5000 m3/day capacity). The packed bed of gravel provides ideal conditions for the formation of compact settleable flocs because of continuous recontact provided by the sinuous flow of water through the interstices formed by the gravel. The field data which were obtained from the operation of the water supply treatment unit cover the physical, chemical and biological water qualities of the raw and settled water as obtained by the operation of the treatment unit. The experiments were carried out with the aim of assessing the efficiency of the gravel filter in removing the turbidity, pathogenic bacteria, from the raw water. The water treatment plant, which was constructed for the treatment of river water, was in principle a rapid sand filter. The results show that the average value of the turbidity level of the settled water was 4.83 NTU with a standard deviation of turbidity 2.893 NTU. This indicated that the removal efficiency of the sedimentation tank (gravel filter) was about 67.8 %. for pH values fluctuated between 7.75 and 8.15, indicating the alkaline nature of the raw water of the river Shatt Al-Hilla, as expected. Raw water pH is depressed slightly following alum coagulation. The pH of the settled water ranged from 7.75 to a maximum of 8.05. The bacteriological tests which were carried out on the water samples were: total coliform test, E-coli test, and the plate count test. In each test the procedure used was as outlined in the Standard Methods for the Examination of Water and Wastewater (APHA, AWWA, and WPCF, 1985). The gravel filter exhibit a low performance in removing bacterial load. The percentage bacterial removal, which is maximum for total plate count (19%) and minimum for total coliform (16.82%).

Effect of Real Wastewater on Biotransformation of 17α-ethynylestradiol by Ammonia-Oxidizing Bacteria in Nitrifying Activated Sludge

17α-ethynylestradiol (EE2) is a synthetic estrogen used as a key ingredient in an oral contraceptives pill. EE2 is an endocrine disrupting compound, high in estrogenic potency. Although EE2 exhibits low degree of biodegradability with common microorganisms in wastewater treatment plants (WWTPs), this compound can be biotransformed by ammonia-oxidizing bacteria (AOB) via a co-metabolism mechanism in WWTPs. This study aimed to investigate the effect of real wastewater on biotransformation of EE2 by AOB. A preliminary experiment on the effect of nitrite and pH levels on abiotic transformation of EE2 suggested that the abiotic transformation occurred at only pH

Nutrients Removal from Municipal Wastewater Treatment Plant Effluent using Eichhornia Crassipes

Water hyacinth has been used in aquatic systems for wastewater purification in many years worldwide. The role of water hyacinth (Eichhornia crassipes) species in polishing nitrate and phosphorus concentration from municipal wastewater treatment plant effluent by phytoremediation method was evaluated. The objective of this project is to determine the removal efficiency of water hyacinth in polishing nitrate and phosphorus, as well as chemical oxygen demand (COD) and ammonia. Water hyacinth is considered as the most efficient aquatic plant used in removing vast range of pollutants such as organic matters, nutrients and heavy metals. Water hyacinth, also referred as macrophytes, were cultivated in the treatment house in a reactor tank of approximately 90(L) x 40(W) x 25(H) in dimension and built with three compartments. Three water hyacinths were placed in each compartments and water sample in each compartment were collected in every two days. The plant observation was conducted by weight measurement, plant uptake and new young shoot development. Water hyacinth effectively removed approximately 49% of COD, 81% of ammonia, 67% of phosphorus and 92% of nitrate. It also showed significant growth rate at starting from day 6 with 0.33 shoot/day and they kept developing up to 0.38 shoot/day at the end of day 24. From the studies conducted, it was proved that water hyacinth is capable of polishing the effluent of municipal wastewater which contains undesirable amount of nitrate and phosphorus concentration.

Design and Economical Performance of Gray Water Treatment Plant in Rural Region

In India, the quarrel between the budding human populace and the planet-s unchanging supply of freshwater and falling water tables has strained attention the reuse of gray water as an alternative water resource in rural development. This paper present the finest design of laboratory scale gray water treatment plant, which is a combination of natural and physical operations such as primary settling with cascaded water flow, aeration, agitation and filtration, hence called as hybrid treatment process. The economical performance of the plant for treatment of bathrooms, basins and laundries gray water showed in terms of deduction competency of water pollutants such as COD (83%), TDS (70%), TSS (83%), total hardness (50%), oil and grease (97%), anions (46%) and cations (49%). Hence, this technology could be a good alternative to treat gray water in residential rural area.