Kinematic Optimal Design on a New Robotic Platform for Stair Climbing

Stair climbing is one of critical issues for field robots to widen applicable areas. This paper presents optimal design on kinematic parameters of a new robotic platform for stair climbing. The robotic platform climbs various stairs by body flip locomotion with caterpillar type main platform. Kinematic parameters such as platform length, platform height, and caterpillar rotation speed are optimized to maximize stair climbing stability. Three types of stairs are used to simulate typical user conditions. The optimal design process is conducted based on Taguchi methodology, and resulting parameters with optimized objective function are presented. In near future, a prototype is assembled for real environment testing.

Modelling Silica Optical Fibre Reliability: A Software Application

In order to assess optical fiber reliability in different environmental and stress conditions series of testing are performed simulating overlapping of chemical and mechanical controlled varying factors. Each series of testing may be compared using statistical processing: i.e. Weibull plots. Due to the numerous data to treat, a software application has appeared useful to interpret selected series of experiments in function of envisaged factors. The current paper presents a software application used in the storage, modelling and interpretation of experimental data gathered from optical fibre testing. The present paper strictly deals with the software part of the project (regarding the modelling, storage and processing of user supplied data).

An Efficient Framework to Build Up Malware Dataset

This research paper presents a framework on how to build up malware dataset.Many researchers took longer time to clean the dataset from any noise or to transform the dataset into a format that can be used straight away for testing. Therefore, this research is proposing a framework to help researchers to speed up the malware dataset cleaningprocesses which later can be used for testing. It is believed, an efficient malware dataset cleaning processes, can improved the quality of the data, thus help to improve the accuracy and the efficiency of the subsequent analysis. Apart from that, an in-depth understanding of the malware taxonomy is also important prior and during the dataset cleaning processes. A new Trojan classification has been proposed to complement this framework.This experiment has been conducted in a controlled lab environment and using the dataset from VxHeavens dataset. This framework is built based on the integration of static and dynamic analyses, incident response method and knowledge database discovery (KDD) processes.This framework can be used as the basis guideline for malware researchers in building malware dataset.

Defect Prevention and Detection of DSP-software

The users are now expecting higher level of DSP(Digital Signal Processing) software quality than ever before. Prevention and detection of defect are critical elements of software quality assurance. In this paper, principles and rules for prevention and detection of defect are suggested, which are not universal guidelines, but are useful for both novice and experienced DSP software developers.

CT Reconstruction from a Limited Number of X-Ray Projections

Most CT reconstruction system x-ray computed tomography (CT) is a well established visualization technique in medicine and nondestructive testing. However, since CT scanning requires sampling of radiographic projections from different viewing angles, common CT systems with mechanically moving parts are too slow for dynamic imaging, for instance of multiphase flows or live animals. A large number of X-ray projections are needed to reconstruct CT images, so the collection and calculation of the projection data consume too much time and harmful for patient. For the purpose of solving the problem, in this study, we proposed a method for tomographic reconstruction of a sample from a limited number of x-ray projections by using linear interpolation method. In simulation, we presented reconstruction from an experimental x-ray CT scan of a Aluminum phantom that follows to two steps: X-ray projections will be interpolated using linear interpolation method and using it for CT reconstruction based upon Ordered Subsets Expectation Maximization (OSEM) method.

Further Thoughtson a Sequential Life Testing Approach Using an Inverse Weibull Model

In this paper we will develop further the sequential life test approach presented in a previous article by [1] using an underlying two parameter Inverse Weibull sampling distribution. The location parameter or minimum life will be considered equal to zero. Once again we will provide rules for making one of the three possible decisions as each observation becomes available; that is: accept the null hypothesis H0; reject the null hypothesis H0; or obtain additional information by making another observation. The product being analyzed is a new electronic component. There is little information available about the possible values the parameters of the corresponding Inverse Weibull underlying sampling distribution could have.To estimate the shape and the scale parameters of the underlying Inverse Weibull model we will use a maximum likelihood approach for censored failure data. A new example will further develop the proposed sequential life testing approach.

Fault Classification of a Doubly FED Induction Machine Using Neural Network

Rapid progress in process automation and tightening quality standards result in a growing demand being placed on fault detection and diagnostics methods to provide both speed and reliability of motor quality testing. Doubly fed induction generators are used mainly for wind energy conversion in MW power plants. This paper presents a detection of an inter turn stator and an open phase faults, in a doubly fed induction machine whose stator and rotor are supplied by two pulse width modulation (PWM) inverters. The method used in this article to detect these faults, is based on Park-s Vector Approach, using a neural network.

Influencing Attitude Change for Sustainability through Persuasion

Food mileage is one of the important issues concerning environmental sustainability. In this research we have utilized a prototype platform with iterative user-centered testing. With these findings we successfully demonstrate the use of the context of persuasive methods to influence users- attitudes towards the sustainable concept.

Augmented Reality in Schools: Preliminary Evaluation Results from a Summer School

Formative usability evaluation aims at finding usability problems during the development process. The earlier these problems are identified, the less expensive to fix they are. This paper presents some preliminary results from a formative usability testing of the 1st prototype developed for the ARiSE (Augmented Reality in School Environments) project.

Software Test Data Generation using Ant Colony Optimization

State-based testing is frequently used in software testing. Test data generation is one of the key issues in software testing. A properly generated test suite may not only locate the errors in a software system, but also help in reducing the high cost associated with software testing. It is often desired that test data in the form of test sequences within a test suite can be automatically generated to achieve required test coverage. This paper proposes an Ant Colony Optimization approach to test data generation for the state-based software testing.

Objectivity, Reliability and Validity of the 90º Push-Ups Test Protocol Among Male and Female Students of Sports Science Program

This study was conducted to determine the objectivity, reliability and validity of the 90º push-ups test protocol among male and female students of Sports Science Program, Faculty of Sports Science and Coaching Sultan Idris University of Education. Samples (n = 300), consisted of males (n = 168) and females (n = 132) students were randomly selected for this study. Researchers tested the 90º push-ups on the sample twice in a single trial, test and re-test protocol in the bench press test. Pearson-Product Moment Correlation method's was used to determine the value of objectivity, reliability and validity testing. The findings showed that the 900 pushups test protocol showed high consistency between the two testers with a value of r = .99. Likewise, The reliability value between test and re-test for the 90º push-ups test for the male (r=.93) and female (r=.93) students was also high. The results showed a correlation between 90º push-ups test and bench press test for boys was r = .64 and girls was r = .28. This finding indicates that the use of the 90º push-ups to test muscular strength and endurance in the upper body of males has a higher validity values than female students.

Additional Considerations on a Sequential Life Testing Approach using a Weibull Model

In this paper we will develop further the sequential life test approach presented in a previous article by [1] using an underlying two parameter Weibull sampling distribution. The minimum life will be considered equal to zero. We will again provide rules for making one of the three possible decisions as each observation becomes available; that is: accept the null hypothesis H0; reject the null hypothesis H0; or obtain additional information by making another observation. The product being analyzed is a new type of a low alloy-high strength steel product. To estimate the shape and the scale parameters of the underlying Weibull model we will use a maximum likelihood approach for censored failure data. A new example will further develop the proposed sequential life testing approach.

BugCatcher.Net: Detecting Bugs and Proposing Corrective Solutions

Although achieving zero-defect software release is practically impossible, software industries should take maximum care to detect defects/bugs well ahead in time allowing only bare minimums to creep into released version. This is a clear indicator of time playing an important role in the bug detection. In addition to this, software quality is the major factor in software engineering process. Moreover, early detection can be achieved only through static code analysis as opposed to conventional testing. BugCatcher.Net is a static analysis tool, which detects bugs in .NET® languages through MSIL (Microsoft Intermediate Language) inspection. The tool utilizes a Parser based on Finite State Automata to carry out bug detection. After being detected, bugs need to be corrected immediately. BugCatcher.Net facilitates correction, by proposing a corrective solution for reported warnings/bugs to end users with minimum side effects. Moreover, the tool is also capable of analyzing the bug trend of a program under inspection.

Construct Pairwise Test Suites Based on the Bak-Sneppen Model of Biological Evolution

Pairwise testing, which requires that every combination of valid values of each pair of system factors be covered by at lease one test case, plays an important role in software testing since many faults are caused by unexpected 2-way interactions among system factors. Although meta-heuristic strategies like simulated annealing can generally discover smaller pairwise test suite, they may cost more time to perform search, compared with greedy algorithms. We propose a new method, improved Extremal Optimization (EO) based on the Bak-Sneppen (BS) model of biological evolution, for constructing pairwise test suites and define fitness function according to the requirement of improved EO. Experimental results show that improved EO gives similar size of resulting pairwise test suite and yields an 85% reduction in solution time over SA.

Text-independent Speaker Identification Based on MAP Channel Compensation and Pitch-dependent Features

One major source of performance decline in speaker recognition system is channel mismatch between training and testing. This paper focuses on improving channel robustness of speaker recognition system in two aspects of channel compensation technique and channel robust features. The system is text-independent speaker identification system based on two-stage recognition. In the aspect of channel compensation technique, this paper applies MAP (Maximum A Posterior Probability) channel compensation technique, which was used in speech recognition, to speaker recognition system. In the aspect of channel robust features, this paper introduces pitch-dependent features and pitch-dependent speaker model for the second stage recognition. Based on the first stage recognition to testing speech using GMM (Gaussian Mixture Model), the system uses GMM scores to decide if it needs to be recognized again. If it needs to, the system selects a few speakers from all of the speakers who participate in the first stage recognition for the second stage recognition. For each selected speaker, the system obtains 3 pitch-dependent results from his pitch-dependent speaker model, and then uses ANN (Artificial Neural Network) to unite the 3 pitch-dependent results and 1 GMM score for getting a fused result. The system makes the second stage recognition based on these fused results. The experiments show that the correct rate of two-stage recognition system based on MAP channel compensation technique and pitch-dependent features is 41.7% better than the baseline system for closed-set test.

Investigation of the Effectiveness of Siloxane Hydrophobic Injection for Renovation of Damp Brick Masonry

Experimental investigation of the effect of hydrophobic injection on siloxane basis on the properties of oldfashioned type of ceramic brick is presented in the paper. At the experimental testing, the matrix density, total open porosity, pore size distribution, sorptivity, water absorption coefficient, sorption and desorption isotherms are measured for the original, as well as the hydrophobic-injection treated brick. On the basis of measured data, the functionality of the hydrophobic injection for the moisture ingress prevention into the studied ceramic brick is assessed.

Comparative Characterization Study of Malaysian Sand as Proppant

This paper presents a review on published literature and experimental works on local sands for possible use as proppant, specifically those from Terengganu coastal area. This includes examination on characteristics of sand samples and selection of experiments for proppant testing. Sand samples from identified areas were tested according to particle size distribution, density, roundness and sphericity, turbidity and mineralogy. Results from sand samples were compared against proppant specifications set by API RP 56 and selected commercial proppants. The present study found that the size distribution, sphericity, turbidity and bulk density of Terengganu sands are at par with some of commercial proppants. Nevertheless, Terengganu sand samples do not completely surpass the required roundness for use as proppant.

A Case Study to Assess the Validity of Function Points

Many metrics were proposed to evaluate the characteristics of the analysis and design model of a given product which in turn help to assess the quality of the product. Function point metric is a measure of the 'functionality' delivery by the software. This paper presents an analysis of a set of programs of a project developed in Cµ through Function Points metric. Function points are measured for a Data Flow Diagram (DFD) of the case developed at initial stage. Lines of Codes (LOCs) and possible errors are calculated with the help of measured Function Points (FPs). The calculations are performed using suitable established functions. Calculated LOCs and errors are compared with actual LOCs and errors found at the time of analysis & design review, implementation and testing. It has been observed that actual found errors are more than calculated errors. On the basis of analysis and observations, authors conclude that function point provides useful insight and helps to analyze the drawbacks in the development process.

Modelling the Occurrence of Defects and Change Requests during User Acceptance Testing

Software developed for a specific customer under contract typically undergoes a period of testing by the customer before acceptance. This is known as user acceptance testing and the process can reveal both defects in the system and requests for changes to the product. This paper uses nonhomogeneous Poisson processes to model a real user acceptance data set from a recently developed system. In particular a split Poisson process is shown to provide an excellent fit to the data. The paper explains how this model can be used to aid the allocation of resources through the accurate prediction of occurrences both during the acceptance testing phase and before this activity begins.

Software Tools for System Identification and Control using Neural Networks in Process Engineering

Neural networks offer an alternative approach both for identification and control of nonlinear processes in process engineering. The lack of software tools for the design of controllers based on neural network models is particularly pronounced in this field. SIMULINK is properly a widely used graphical code development environment which allows system-level developers to perform rapid prototyping and testing. Such graphical based programming environment involves block-based code development and offers a more intuitive approach to modeling and control task in a great variety of engineering disciplines. In this paper a SIMULINK based Neural Tool has been developed for analysis and design of multivariable neural based control systems. This tool has been applied to the control of a high purity distillation column including non linear hydrodynamic effects. The proposed control scheme offers an optimal response for both theoretical and practical challenges posed in process control task, in particular when both, the quality improvement of distillation products and the operation efficiency in economical terms are considered.