Evaluation of Baking Properties and Sensory Quality of Wheat-Cowpea Flour

The fortified of soft wheat flour with cowpea flour in bread making was investigated. The Soft wheat flour (SWF) was substituted by cowpea flour at levels of 5, 15 and 20%. The protein content of composite breads ranged from 6.1 – 9.9%. Significant difference was observed in moisture, protein and crude fibre contents of control (wheat bread) and composite bread at 5% addition of cowpea. Water absorption capacities of composite flours increased with increasing levels of cowpea flour in the blend. The specific loaf volume decreased significantly with increased cowpea content of blends. The overall acceptability of the 5% cowpea flour content of composite bread was not significantly different from the control (Soft Wheat-bread) but there is significantly different with increasing the levels of cowpea flour in the blend more than 5%.

Quality Evaluation of Cookies Produced from Blends of Sweet Potato and Fermented Soybean Flour

The study was conducted to evaluate the quality characteristics of cookies produced from sweet potato-fermented soybean flour. Cookies were subjected to proximate and sensory analysis to determine the acceptability of the product. Protein, fat and ash increased as the proportion of soybean flour increased, ranging from 13.8-21.7, 1.22-5.25 and 2.20-2.57 respectively. The crude fibre content was within the range of 3.08-4.83%. The moisture content of the cookies decreased with increase in soybean flour from 3.42- 2.13%. Cookies produced from whole sweet potato flour had the highest moisture content of 3.42% while 30% substitution had the lowest moisture content 2.13%. A nine point hedonic scale was used to evaluate the organoleptic characteristics of the cookies. The sensory analysis indicated that there was no significant difference between the cookies produced even when compared to the control 100% sweet potato cookies. The overall acceptance of the cookies was ranked to 20% soybean flour substitute.

Insights into Smoothies with High Levels of Fibre and Polyphenols: Factors Influencing Chemical, Rheological and Sensory Properties

Attempts to add fibre and polyphenols (PPs) into popular beverages present challenges related to the properties of finished products such as smoothies. Consumer acceptability, viscosity and phenolic composition of smoothies containing high levels of fruit fibre (2.5-7.5 g per 300 mL serve) and PPs (250-750 mg per 300 mL serve) were examined. The changes in total extractable PP, vitamin C content, and colour of selected smoothies over a storage stability trial (4°C, 14 days) were compared. A set of acidic aqueous model beverages were prepared to further examine the effect of two different heat treatments on the stability and extractability of PPs. Results show that overall consumer acceptability of high fibre and PP smoothies was low, with average hedonic scores ranging from 3.9 to 6.4 (on a 1-9 scale). Flavour, texture and overall acceptability decreased as fibre and polyphenol contents increased, with fibre content exerting a stronger effect. Higher fibre content resulted in greater viscosity, with an elevated PP content increasing viscosity only slightly. The presence of fibre also aided the stability and extractability of PPs after heating. A reduction of extractable PPs, vitamin C content and colour intensity of smoothies was observed after a 14-day storage period at 4°C. Two heat treatments (75°C for 45 min or 85°C for 1 min) that are normally used for beverage production, did not cause significant reduction of total extracted PPs. It is clear that high levels of added fibre and PPs greatly influence the consumer appeal of smoothies, suggesting the need to develop novel formulation and processing methods if a satisfactory functional beverage is to be developed incorporating these ingredients.

A Novel Machining Signal Filtering Technique: Z-notch Filter

A filter is used to remove undesirable frequency information from a dynamic signal. This paper shows that the Znotch filter filtering technique can be applied to remove the noise nuisance from a machining signal. In machining, the noise components were identified from the sound produced by the operation of machine components itself such as hydraulic system, motor, machine environment and etc. By correlating the noise components with the measured machining signal, the interested components of the measured machining signal which was less interfered by the noise, can be extracted. Thus, the filtered signal is more reliable to be analysed in terms of noise content compared to the unfiltered signal. Significantly, the I-kaz method i.e. comprises of three dimensional graphical representation and I-kaz coefficient, Z∞ could differentiate between the filtered and the unfiltered signal. The bigger space of scattering and the higher value of Z∞ demonstrated that the signal was highly interrupted by noise. This method can be utilised as a proactive tool in evaluating the noise content in a signal. The evaluation of noise content is very important as well as the elimination especially for machining operation fault diagnosis purpose. The Z-notch filtering technique was reliable in extracting noise component from the measured machining signal with high efficiency. Even though the measured signal was exposed to high noise disruption, the signal generated from the interaction between cutting tool and work piece still can be acquired. Therefore, the interruption of noise that could change the original signal feature and consequently can deteriorate the useful sensory information can be eliminated.

Optimization of Methods for Development of Fermented-Distillate of Passion Fruit Beverage

Fermented beverages have high expression in the market for beverages in general, is increasingly valued in situations where the characteristic aroma and flavor of the material that gave rise to them are kept after processing. This study aimed to develop a distilled beverage from passion fruit, and assess, by sensory tests and chromatographic profile, the influence of different treatments (FM1- spirit with pulp addiction and FM2 – spirit with bigger ratio of pulp in must) in the setting of volatiles in the fruit drink, and performing chemical characterization taking into account the main parameters of quality established by the legislation. The chromatograms and the first sensorial tests had indicated that sample FM1 possess better characteristics of aroma, as much of how much quantitative the qualitative point of view. However, it analyzes it sensorial end (preference test) disclosed the biggest preference of the cloth provers for sample FM2-2 (note 7.93), being the attributes of decisive color and flavor in this reply, confirmed for the observed values lowest of fixed and total acidity in the samples of treatment FM2.

Real Time Multi-Sensory Force Sensing Mat for Sports Biomechanics and Human Gait Analysis

This paper presents a real time force sensing instrument that is designed for human gait analysis purposes. It is capable of recording and monitoring ground reaction forces exerted by human foot during various activities such as walking, running and jumping in real time. In overall, force sensing mat mainly consists of three elements: the force sensing mat, signal conditioning circuit and data acquisition device. Force sensing mat is the mat that contains an array of force sensing elements. To control and process the incoming signal from the force sensing mat, Force-Logger and Force-Reloader are developed using National Instrument Labview. This paper describes the architecture of the force sensing mat, signal conditioning circuit and the real time streaming of the incoming data from the force sensing mat. Additionally, a preliminary experiment dataset is presented in this paper.

Effect of Wheat Flour Extraction Rates on Flour Composition, Farinographic Characteristics and Sensory Perception of Sourdough Naans

The effect of wheat flour extraction rates on flour composition, farinographic characteristics and the quality of sourdough naans was investigated. The results indicated that by increasing the extraction rate, the amount of protein, fiber, fat and ash increased, whereas moisture content decreased. Farinographic characteristic like water absorption and dough development time increased with an increase in flour extraction rate but the dough stabilities and tolerance indices were reduced with an increase in flour extraction rates. Titratable acidity for both sourdough and sourdough naans also increased along with flour extraction rate. The study showed that overall quality of sourdough naans were affected by both flour extraction rate and starter culture used. Sensory analysis of sourdough naans revealed that desirable extraction rate for sourdough naan was 76%.

Fast Factored DCT-LMS Speech Enhancement for Performance Enhancement of Digital Hearing Aid

Background noise is particularly damaging to speech intelligibility for people with hearing loss especially for sensorineural loss patients. Several investigations on speech intelligibility have demonstrated sensorineural loss patients need 5-15 dB higher SNR than the normal hearing subjects. This paper describes Discrete Cosine Transform Power Normalized Least Mean Square algorithm to improve the SNR and to reduce the convergence rate of the LMS for Sensory neural loss patients. Since it requires only real arithmetic, it establishes the faster convergence rate as compare to time domain LMS and also this transformation improves the eigenvalue distribution of the input autocorrelation matrix of the LMS filter. The DCT has good ortho-normal, separable, and energy compaction property. Although the DCT does not separate frequencies, it is a powerful signal decorrelator. It is a real valued function and thus can be effectively used in real-time operation. The advantages of DCT-LMS as compared to standard LMS algorithm are shown via SNR and eigenvalue ratio computations. . Exploiting the symmetry of the basis functions, the DCT transform matrix [AN] can be factored into a series of ±1 butterflies and rotation angles. This factorization results in one of the fastest DCT implementation. There are different ways to obtain factorizations. This work uses the fast factored DCT algorithm developed by Chen and company. The computer simulations results show superior convergence characteristics of the proposed algorithm by improving the SNR at least 10 dB for input SNR less than and equal to 0 dB, faster convergence speed and better time and frequency characteristics.

Prediction of Watermelon Consumer Acceptability based on Vibration Response Spectrum

It is difficult to judge ripeness by outward characteristics such as size or external color. In this paper a nondestructive method was studied to determine watermelon (Crimson Sweet) quality. Responses of samples to excitation vibrations were detected using laser Doppler vibrometry (LDV) technology. Phase shift between input and output vibrations were extracted overall frequency range. First and second were derived using frequency response spectrums. After nondestructive tests, watermelons were sensory evaluated. So the samples were graded in a range of ripeness based on overall acceptability (total desired traits consumers). Regression models were developed to predict quality using obtained results and sample mass. The determination coefficients of the calibration and cross validation models were 0.89 and 0.71 respectively. This study demonstrated feasibility of information which is derived vibration response curves for predicting fruit quality. The vibration response of watermelon using the LDV method is measured without direct contact; it is accurate and timely, which could result in significant advantage for classifying watermelons based on consumer opinions.

An Anatomically-Based Model of the Nerves in the Human Foot

Sensory nerves in the foot play an important part in the diagnosis of various neuropathydisorders, especially in diabetes mellitus.However, a detailed description of the anatomical distribution of the nerves is currently lacking. A computationalmodel of the afferent nerves inthe foot may bea useful tool for the study of diabetic neuropathy. In this study, we present the development of an anatomically-based model of various major sensory nerves of the sole and dorsal sidesof the foot. In addition, we presentan algorithm for generating synthetic somatosensory nerve networks in the big-toe region of a right foot model. The algorithm was based on a modified version of the Monte Carlo algorithm, with the capability of being able to vary the intra-epidermal nerve fiber density in differentregionsof the foot model. Preliminary results from the combinedmodel show the realistic anatomical structure of the major nerves as well as the smaller somatosensory nerves of the foot. The model may now be developed to investigate the functional outcomes of structural neuropathyindiabetic patients.

Study of EEGs from Somatosensory Cortex and Alzheimer's Disease Sources

This study is to investigate the electroencephalogram (EEG) differences generated from a normal and Alzheimer-s disease (AD) sources. We also investigate the effects of brain tissue distortions due to AD on EEG. We develop a realistic head model from T1 weighted magnetic resonance imaging (MRI) using finite element method (FEM) for normal source (somatosensory cortex (SC) in parietal lobe) and AD sources (right amygdala (RA) and left amygdala (LA) in medial temporal lobe). Then, we compare the AD sourced EEGs to the SC sourced EEG for studying the nature of potential changes due to sources and 5% to 20% brain tissue distortions. We find an average of 0.15 magnification errors produced by AD sourced EEGs. Different brain tissue distortion models also generate the maximum 0.07 magnification. EEGs obtained from AD sources and different brain tissue distortion levels vary scalp potentials from normal source, and the electrodes residing in parietal and temporal lobes are more sensitive than other electrodes for AD sourced EEG.

Distributed Architecture of an Autonomous Four Rotor Mini-Rotorcraft based on Multi-Agent System

In this paper, we present the recently implemented approach allowing dynamics systems to plan its actions, taking into account the environment perception changes, and to control their execution when uncertainty and incomplete knowledge are the major characteristics of the situated environment [1],[2],[3],[4]. The control distributed architecture has three modules and the approach is related to hierarchical planning: the plan produced by the planner is further refined at the control layer that in turn supervises its execution by a functional level. We propose a new intelligent distributed architecture constituted by: Multi-Agent subsystem of the sensor, of the interpretation and representation of environment [9], of the dynamic localization and of the action. We tested this distributed architecture with dynamic system in the known environment. The autonomous for Rotor Mini Rotorcraft task is described by the primitive actions. The distributed controlbased on multi-agent system is in charge of achieving each task in the best possible way taking into account the context and sensory feedback.

Sensory Evaluation of the Selected Coffee Products Using Fuzzy Approach

Knowing consumers' preferences and perceptions of the sensory evaluation of drink products are very significant to manufacturers and retailers alike. With no appropriate sensory analysis, there is a high risk of market disappointment. This paper aims to rank the selected coffee products and also to determine the best of quality attribute through sensory evaluation using fuzzy decision making model. Three products of coffee drinks were used for sensory evaluation. Data were collected from thirty judges at a hypermarket in Kuala Terengganu, Malaysia. The judges were asked to specify their sensory evaluation in linguistic terms of the quality attributes of colour, smell, taste and mouth feel for each product and also the weight of each quality attribute. Five fuzzy linguistic terms represent the quality attributes were introduced prior analysing. The judgment membership function and the weights were compared to rank the products and also to determine the best quality attribute. The product of Indoc was judged as the first in ranking and 'taste' as the best quality attribute. These implicate the importance of sensory evaluation in identifying consumers- preferences and also the competency of fuzzy approach in decision making.

Evolutionary Algorithms for Learning Primitive Fuzzy Behaviors and Behavior Coordination in Multi-Objective Optimization Problems

Evolutionary robotics is concerned with the design of intelligent systems with life-like properties by means of simulated evolution. Approaches in evolutionary robotics can be categorized according to the control structures that represent the behavior and the parameters of the controller that undergo adaptation. The basic idea is to automatically synthesize behaviors that enable the robot to perform useful tasks in complex environments. The evolutionary algorithm searches through the space of parameterized controllers that map sensory perceptions to control actions, thus realizing a specific robotic behavior. Further, the evolutionary algorithm maintains and improves a population of candidate behaviors by means of selection, recombination and mutation. A fitness function evaluates the performance of the resulting behavior according to the robot-s task or mission. In this paper, the focus is in the use of genetic algorithms to solve a multi-objective optimization problem representing robot behaviors; in particular, the A-Compander Law is employed in selecting the weight of each objective during the optimization process. Results using an adaptive fitness function show that this approach can efficiently react to complex tasks under variable environments.

Usability and Affordances: Examinations of Object-Naming and Object-Task Performance in Haptic Interfaces

The introduction of haptic elements in a graphic user interfaces are becoming more widespread. Since haptics are being introduced rapidly into computational tools, investigating how these models affect Human-Computer Interaction would help define how to integrate and model new modes of interaction. The interest of this paper is to discuss and investigate the issues surrounding Haptic and Graphic User Interface designs (GUI) as separate systems, as well as understand how these work in tandem. The development of these systems is explored from a psychological perspective, based on how usability is addressed through learning and affordances, defined by J.J. Gibson. Haptic design can be a powerful tool, aiding in intuitive learning. The problems discussed within the text is how can haptic interfaces be integrated within a GUI without the sense of frivolity. Juxtaposing haptics and Graphic user interfaces has issues of motivation; GUI tends to have a performatory process, while Haptic Interfaces use affordances to learn tool use. In a deeper view, it is noted that two modes of perception, foveal and ambient, dictate perception. These two modes were once thought to work in tandem, however it has been discovered that these processes work independently from each other. Foveal modes interpret orientation is space which provide for posture, locomotion, and motor skills with variations of the sensory information, which instructs perceptions of object-task performance. It is contended, here, that object-task performance is a key element in the use of Haptic Interfaces because exploratory learning uses affordances in order to use an object, without meditating an experience cognitively. It is a direct experience that, through iteration, can lead to skill-sets. It is also indicated that object-task performance will not work as efficiently without the use of exploratory or kinesthetic learning practices. Therefore, object-task performance is not as congruently explored in GUI than it is practiced in Haptic interfaces.

Potential of Exopolysaccharides in Yoghurt Production

Consumer demand for products with low fat or sugar content and low levels of food additives, as well as cost factors, make exopolysaccharides (EPS) a viable alternative. EPS remain an interesting tool to modulate the sensory properties of yoghurt. This study was designed to evaluate EPS production potential of commercial yoghurt starter cultures (Yo-Flex starters: Harmony 1.0, TWIST 1.0 and YF-L902, Chr.Hansen, Denmark) and their influence on an apparent viscosity of yoghurt samples. The production of intracellularly synthesized EPS by different commercial yoghurt starters varies roughly from 144,08 to 440,81 mg/l. Analysing starters’ producing EPS, they showed large variations in concentration and supposedly composition. TWIST 1.0 had produced greater amounts of EPS in MRS medium and in yoghurt samples but there wasn’t determined significant contribution to development of texture as well as an apparent viscosity of the final product. YF-L902 and Harmony 1.0 starters differed considerably in EPS yields, but not in apparent viscosities (p>0.05) of the final yoghurts. Correlation between EPS concentration and viscosity of yoghurt samples was not established in the study.

Study of γ Irradiation and Storage Time on Microbial Load and Chemical Quality of Persian Saffron

Irradiation is considered one of the most efficient technological processes for the reduction of microorganisms in food. It can be used to improve the safety of food products, and to extend their shelf lives. The aim of this study was to evaluate the effects of gamma irradiation for improvement of saffron shelf life. Samples were treated with 0 (none irradiated), 1.0, 2.0, 3.0 and 4.0 kGy of gamma irradiation and held for 2 months. The control and irradiated samples were underwent microbial analysis, chemical characteristics and sensory evaluation at 30 days intervals. Microbial analysis indicated that irradiation had a significant effect (P < 0.05) on the reduction of microbial loads. There was no significant difference in sensory quality and chemical characteristics during storage in saffron.

Effect of Process Parameters on the Proximate Composition, Functional and Sensory Properties

Flour from Mucuna beans (Mucuna pruriens) were used in producing texturized meat analogue using a single screw extruder to monitor modifications on the proximate composition and the functional properties at high moisture level. Response surface methodology based on Box Behnken design at three levels of barrel temperature (110, 120, 130°C), screw speed (100,120,140rpm) and feed moisture (44, 47, 50%) were used in 17 runs. Regression models describing the effect of variables on the product responses were obtained. Descriptive profile analyses and consumer acceptability test were carried out on optimized flavoured extruded meat analogue. Responses were mostly affected by barrel temperature and moisture level and to a lesser extent by screw speed. Optimization results based on desirability concept indicated that a barrel temperature of 120.15°C, feed moisture of 47% and screw speed of 119.19 rpm would produce meat analogue of preferable proximate composition, functional and sensory properties which reveals consumers` likeness for the product.