Recovery of Missing Samples in Multi-channel Oversampling of Multi-banded Signals

We show that in a two-channel sampling series expansion of band-pass signals, any finitely many missing samples can always be recovered via oversampling in a larger band-pass region. We also obtain an analogous result for multi-channel oversampling of harmonic signals.

Viscosity Reduction and Upgrading of Athabasca Oilsands Bitumen by Natural Zeolite Cracking

Oilsands bitumen is an extremely important source of energy for North America. However, due to the presence of large molecules such as asphaltenes, the density and viscosity of the bitumen recovered from these sands are much higher than those of conventional crude oil. As a result the extracted bitumen has to be diluted with expensive solvents, or thermochemically upgraded in large, capital-intensive conventional upgrading facilities prior to pipeline transport. This study demonstrates that globally abundant natural zeolites such as clinoptilolite from Saint Clouds, New Mexico and Ca-chabazite from Bowie, Arizona can be used as very effective reagents for cracking and visbreaking of oilsands bitumen. Natural zeolite cracked oilsands bitumen products are highly recoverable (up to ~ 83%) using light hydrocarbons such as pentane, which indicates substantial conversion of heavier fractions to lighter components. The resultant liquid products are much less viscous, and have lighter product distribution compared to those produced from pure thermal treatment. These natural minerals impart similar effect on industrially extracted Athabasca bitumen.

No one Set of Parameter Values Can Simulate the Epidemics Due to SARS Occurring at Different Localities

A mathematical model for the transmission of SARS is developed. In addition to dividing the population into susceptible (high and low risk), exposed, infected, quarantined, diagnosed and recovered classes, we have included a class called untraced. The model simulates the Gompertz curves which are the best representation of the cumulative numbers of probable SARS cases in Hong Kong and Singapore. The values of the parameters in the model which produces the best fit of the observed data for each city are obtained by using a differential evolution algorithm. It is seen that the values for the parameters needed to simulate the observed daily behaviors of the two epidemics are different.

Production of Novel Bioactive Yogurt Enriched with Olive Fruit Polyphenols

In the course of the present work, plain (nonencapsulated) and microencapsulated polyphenols were produced using olive mill wastewater (OMW) as raw material, in order to be used for enrichment of yogurt and dairy products. The OMW was first clarified by using membrane technology and subsequently the contained poly-phenols were isolated by adsorption-desorption technique using selective macro-porous resins and finally recovered in dry form after been processed by RO membrane technique followed by freeze drying. Moreover, the polyphenols were encapsulated in modified starch by freeze drying in order to mask the color and bitterness effect and improve their functionality. The two products were used successfully as additives in yogurt preparations and the produced products were acceptable by the consumers and presented with certain advantage to the plain yogurt. For the herein proposed production scheme a patent application was already submitted.

Floating-Point Scaling for BSS Gain Control

In Blind Source Separation (BSS) processing, taking advantage of scaling factor indetermination and based on the floatingpoint representation, we propose a scaling technique applied to the separation matrix, to avoid the saturation or the weakness in the recovered source signals. This technique performs an Automatic Gain Control (AGC) in an on-line BSS environment. We demonstrate the effectiveness of this technique by using the implementation of a division free BSS algorithm with two input, two output. This technique is computationally cheaper and efficient for a hardware implementation.

Graphical Approach for Targeting Work Exchange Networks

Depressurization and pressurization streams in industrial systems constitute a work exchange network (WEN). In this paper, a novel graphical approach for targeting energy conservation potential of a WEN is proposed. Through constructing the composite work curves in the pressure-work diagram and assuming all of the mechanical energy of the depressurization streams is recovered by expanders, the maximum work target of a WEN can be determined via the proposed targeting steps. A WEN in an ammonia production process is used as a case study to illustrate the applicability of the proposed graphical approach.

Separation of Polyphenolics and Sugar by Ultrafiltration: Effects of Operating Conditions on Fouling and Diafiltration

Polyphenolics and sugar are the components of many fruit juices. In this work, the performance of ultra-filtration (UF) for separating phenolic compounds from apple juice was studied by performing batch experiments in a membrane module with an area of 0.1 m2 and fitted with a regenerated cellulose membrane of 1 kDa MWCO. The effects of various operating conditions: transmembrane pressure (3, 4, 5 bar), temperature (30, 35, 40 ºC), pH (2, 3, 4, 5), feed concentration (3, 5, 7, 10, 15 ºBrix for apple juice) and feed flow rate (1, 1.5, 1.8 L/min) on the performance were determined. The optimum operating conditions were: transmembrane pressure 4 bar, temperature 30 ºC, feed flow rate 1 – 1.8 L/min, pH 3 and 10 Brix (apple juice). After performing ultrafiltration under these conditions, the concentration of polyphenolics in retentate was increased by a factor of up to 2.7 with up to 70% recovered in the permeate and with approx. 20% of the sugar in that stream.. Application of diafiltration (addition of water to the concentrate) can regain the flux by a factor of 1.5, which has been decreased due to fouling. The material balance performed on the process has shown the amount of deposits on the membrane and the extent of fouling in the system. In conclusion, ultrafiltration has been demonstrated as a potential technology to separate the polyphenolics and sugars from their mixtures and can be applied to remove sugars from fruit juice.

Chaos-based Secure Communication via Continuous Variable Structure Control

The design of chaos-based secure communication via synchronized modified Chua-s systems is investigated in this paper. A continuous control law is proposed to ensure synchronization of the master and slave modified Chua-s systems by using the variable structure control technique. Particularly, the concept of extended systems is introduced such that a continuous control input is obtained to avoid chattering phenomenon. Then, it becomes possible to ensure that the message signal embedded in the transmitter can be recovered in the receiver.

Oil Debris Signal Detection Based on Integral Transform and Empirical Mode Decomposition

Oil debris signal generated from the inductive oil debris monitor (ODM) is useful information for machine condition monitoring but is often spoiled by background noise. To improve the reliability in machine condition monitoring, the high-fidelity signal has to be recovered from the noisy raw data. Considering that the noise components with large amplitude often have higher frequency than that of the oil debris signal, the integral transform is proposed to enhance the detectability of the oil debris signal. To cancel out the baseline wander resulting from the integral transform, the empirical mode decomposition (EMD) method is employed to identify the trend components. An optimal reconstruction strategy including both de-trending and de-noising is presented to detect the oil debris signal with less distortion. The proposed approach is applied to detect the oil debris signal in the raw data collected from an experimental setup. The result demonstrates that this approach is able to detect the weak oil debris signal with acceptable distortion from noisy raw data.

Plasmodium Vivax Malaria Transmission in a Network of Villages

Malaria is a serious, acute and chronic relapsing infection to humans. It is characterized by periodic attacks of chills, fever, nausea, vomiting, back pain, increased sweating anemia, splenomegaly (enlargement of the spleen) and often-fatal complications.The malaria disease is caused by the multiplication of protozoa parasite of the genus Plasmodium. Malaria in humans is due to 4 types of malaria parasites such that Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale. P.vivax malaria differs from P. falciparum malaria in that a person suffering from P. vivax malaria can experience relapses of the disease. Between the relapses, the malaria parasite will remain dormant in the liver of the patient, leading to the patient being classified as being in the dormant class. A mathematical model for the transmission of P. vivax is developed in which the human population is divided into four classes, the susceptible, the infected, the dormant and the recovered. In this paper, we formulate the dynamical model of P. vivax malaria to see the distribution of this disease at the district level.

A Two-Channel Secure Communication Using Fractional Chaotic Systems

In this paper, a two-channel secure communication using fractional chaotic systems is presented. Conditions for chaos synchronization have been investigated theoretically by using Laplace transform. To illustrate the effectiveness of the proposed scheme, a numerical example is presented. The keys, key space, key selection rules and sensitivity to keys are discussed in detail. Results show that the original plaintexts have been well masked in the ciphertexts yet recovered faithfully and efficiently by the present schemes.

An Energy Integration Approach on UHDE Ammonia Process

In this paper, the energy performance of a selected UHDE Ammonia plant is optimized by conducting heat integration through waste heat recovery and the synthesis of a heat exchange network (HEN). Minimum hot and cold utility requirements were estimated through IChemE spreadsheet. Supporting simulation was carried out using HYSYS software. The results showed that there is no need for heating utility while the required cold utility was found to be around 268,714 kW. Hence a threshold pinch case was faced. Then, the hot and cold streams were matched appropriately. Also, waste heat recovered resulted with savings in HP and LP steams of approximately 51.0% and 99.6%, respectively. An economic analysis on proposed HEN showed very attractive overall payback period not exceeding 3 years. In general, a net saving approaching 35% was achieved in implementing heat optimization of current studied UHDE Ammonia process.

A CBR System to New Product Development: An Application for Hearing Devices Design

Nowadays, quick technological changes force companies to develop innovative products in an increasingly competitive environment. Therefore, how to enhance the time of new product development is very important. This design problem often lacks the exact formula for getting it, and highly depends upon human designers- past experiences. For these reasons, in this work, a Casebased reasoning (CBR) system to assist in new product development is proposed. When a case is recovered from the case base, the system will take into account not only the attribute-s specific value and how important it is. It will also take into account if the attribute has a positive influence over the product development. Hence the manufacturing time will be improved. This information will be introduced as a new concept called “adaptability". An application to this method for hearing instrument new design illustrates the proposed approach.

Study on Extraction of Niobium Oxide from Columbite–Tantalite Concentrate

The principal objective of this study is to be able to extract niobium oxide from columbite-tantalite concentrate of Thayet Kon Area in Nay Phi Taw. It is recovered from columbite-tantalite concentrate which contains 19.29 % Nb2O5.The recovery of niobium oxide from columbite-tantalite concentrate can be divided into three main sections, namely, digestion of the concentrate, recovery from the leached solution and precipitation and calcinations. The concentrate was digested with hydrofluoric acid and sulfuric acid. Of the various parameters that effect acidity and time were studied. In the recovery section solvent extraction process using methyl isobutyl ketone was investigated. Ammonium hydroxide was used as a precipitating agent and the precipitate was later calcined. The percentage of niobium oxide is 74%.

Cell Phone: A Vital Clue

Increasing use of cell phone as a medium of human interaction is playing a vital role in solving riddles of crime as well. A young girl went missing from her home late in the evening in the month of August, 2008 when her enraged relatives and villagers physically assaulted and chased her fiancée who often frequented her home. Two years later, her mother lodged a complaint against the relatives and the villagers alleging that after abduction her daughter was either sold or killed as she had failed to trace her. On investigation, a rusted cell phone with partial visible IMEI number, clothes, bangles, human skeleton etc. recovered from abandoned well in the month of May, 2011 were examined in the lab. All hopes pinned on identity of cell phone, for only linking evidence to fix the scene of occurrence supported by call detail record (CDR) and to dispel doubts about mode of sudden disappearance or death as DNA technology did not help in establishing identity of the deceased. The conventional scientific methods were used without success and international mobile equipment identification number of the cell phone could be generated by using statistical analysis followed by online verification. 

Numerical Analysis of the SIR-SI Differential Equations with Application to Dengue Disease Mapping in Kuala Lumpur, Malaysia

The main aim of this study is to describe and introduce a method of numerical analysis in obtaining approximate solutions for the SIR-SI differential equations (susceptible-infectiverecovered for human populations; susceptible-infective for vector populations) that represent a model for dengue disease transmission. Firstly, we describe the ordinary differential equations for the SIR-SI disease transmission models. Then, we introduce the numerical analysis of solutions of this continuous time, discrete space SIR-SI model by simplifying the continuous time scale to a densely populated, discrete time scale. This is followed by the application of this numerical analysis of solutions of the SIR-SI differential equations to the estimation of relative risk using continuous time, discrete space dengue data of Kuala Lumpur, Malaysia. Finally, we present the results of the analysis, comparing and displaying the results in graphs, table and maps. Results of the numerical analysis of solutions that we implemented offers a useful and potentially superior model for estimating relative risks based on continuous time, discrete space data for vector borne infectious diseases specifically for dengue disease. 

Identification of Flexographic-printed Newspapers with NIR Spectral Imaging

Near-infrared (NIR) spectroscopy is a widely used method for material identification for laboratory and industrial applications. While standard spectrometers only allow measurements at one sampling point at a time, NIR Spectral Imaging techniques can measure, in real-time, both the size and shape of an object as well as identify the material the object is made of. The online classification and sorting of recovered paper with NIR Spectral Imaging (SI) is used with success in the paper recycling industry throughout Europe. Recently, the globalisation of the recycling material streams caused that water-based flexographic-printed newspapers mainly from UK and Italy appear also in central Europe. These flexo-printed newspapers are not sufficiently de-inkable with the standard de-inking process originally developed for offset-printed paper. This de-inking process removes the ink from recovered paper and is the fundamental processing step to produce high-quality paper from recovered paper. Thus, the flexo-printed newspapers are a growing problem for the recycling industry as they reduce the quality of the produced paper if their amount exceeds a certain limit within the recovered paper material. This paper presents the results of a research project for the development of an automated entry inspection system for recovered paper that was jointly conducted by CTR AG (Austria) and PTS Papiertechnische Stiftung (Germany). Within the project an NIR SI prototype for the identification of flexo-printed newspaper has been developed. The prototype can identify and sort out flexoprinted newspapers in real-time and achieves a detection accuracy for flexo-printed newspaper of over 95%. NIR SI, the technology the prototype is based on, allows the development of inspection systems for incoming goods in a paper production facility as well as industrial sorting systems for recovered paper in the recycling industry in the near future.

Study on Extraction of Ceric Oxide from Monazite Concentrate

Cerium oxide is to be recovered from monazite, which contains about 27.35% CeO2. The principal objective of this study is to be able to extract cerium oxide from monazite of Moemeik Myitsone Area. The treatment of monazite in this study involves three main steps; extraction of cerium hydroxide from monazite, solvent extraction of cerium hydroxide, and precipitation with oxalic acid and calcination of cerium oxalate.

A Laplace Transform Dual-Reciprocity Boundary Element Method for Axisymmetric Elastodynamic Problems

A dual-reciprocity boundary element method is presented for the numerical solution of a class of axisymmetric elastodynamic problems. The domain integrals that arise in the integrodifferential formulation are converted to line integrals by using the dual-reciprocity method together suitably constructed interpolating functions. The second order time derivatives of the displacement in the governing partial differential equations are suppressed by using Laplace transformation. In the Laplace transform domain, the problem under consideration is eventually reduced to solving a system of linear algebraic equations. Once the linear algebraic equations are solved, the displacement and stress fields in the physical domain can be recovered by using a numerical technique for inverting Laplace transforms.

Authentication and Data Hiding Using a Reversible ROI-based Watermarking Scheme for DICOM Images

In recent years image watermarking has become an important research area in data security, confidentiality and image integrity. Many watermarking techniques were proposed for medical images. However, medical images, unlike most of images, require extreme care when embedding additional data within them because the additional information must not affect the image quality and readability. Also the medical records, electronic or not, are linked to the medical secrecy, for that reason, the records must be confidential. To fulfill those requirements, this paper presents a lossless watermarking scheme for DICOM images. The proposed a fragile scheme combines two reversible techniques based on difference expansion for patient's data hiding and protecting the region of interest (ROI) with tamper detection and recovery capability. Patient's data are embedded into ROI, while recovery data are embedded into region of non-interest (RONI). The experimental results show that the original image can be exactly extracted from the watermarked one in case of no tampering. In case of tampered ROI, tampered area can be localized and recovered with a high quality version of the original area.