A Study of the Cyclic Variations of the Enzyme and the Electrolyte Activity in Uterine and Oviducal Secretions during an Estrous Cycle of the Ewe

Uterine and oviducal fluids are necessary for capacitation of the spermatozoa and early embryonic development. The aim of the present study was to determine the effects of estrous cycle phases (follicular and luteal) on some biological parameters (enzymes, electrolytes and total proteins) in uterine and oviducal secretions of ewes. Oviducal and uterine fluids were collected, diluted and centrifuged. According to our results, concentrations of GPT, G6PDH, total proteins, K and Na were significantly (P

Modeling of Catalyst Deactivation in Catalytic Wet Air Oxidation of Phenol in Fixed Bed Three-Phase Reactor

Modeling and simulation of fixed bed three-phase catalytic reactors are considered for wet air catalytic oxidation of phenol to perform a comparative numerical analysis between tricklebed and packed-bubble column reactors. The modeling involves material balances both for the catalyst particle as well as for different fluid phases. Catalyst deactivation is also considered in a transient reactor model to investigate the effects of various parameters including reactor temperature on catalyst deactivation. The simulation results indicated that packed-bubble columns were slightly superior in performance than trickle beds. It was also found that reaction temperature was the most effective parameter in catalyst deactivation.

A Study on the Effects of Thermodynamic Nonideality and Mass Transfer on Multi-phase Hydrodynamics Using CFD Methods

Considering non-ideal behavior of fluids and its effects on hydrodynamic and mass transfer in multiphase flow is very essential. Simulations were performed that takes into account the effects of mass transfer and mixture non-ideality on hydrodynamics reported by Irani et al. In this paper, by assuming the density of phases to be constant and Raullt-s law instead of using EOS and fugacity coefficient definition, respectively for both the liquid and gas phases, the importance of non-ideality effects on mass transfer and hydrodynamic behavior was studied. The results for a system of octane/propane (T=323 K, P =445 kpa) also indicated that the assumption of constant density in simulation had major role to diverse from experimental data. Furthermore, comparison between obtained results and the previous report indicated significant differences between experimental data and simulation results with more ideal assumptions.

Towards Model-Driven Communications

In modern distributed software systems, the issue of communication among composing parts represents a critical point, but the idea of extending conventional programming languages with general purpose communication constructs seems difficult to realize. As a consequence, there is a (growing) gap between the abstraction level required by distributed applications and the concepts provided by platforms that enable communication. This work intends to discuss how the Model Driven Software Development approach can be considered as a mature technology to generate in automatic way the schematic part of applications related to communication, by providing at the same time high level specialized languages useful in all the phases of software production. To achieve the goal, a stack of languages (meta-meta¬models) has been introduced in order to describe – at different levels of abstraction – the collaborative behavior of generic entities in terms of communication actions related to a taxonomy of messages. Finally, the generation of platforms for communication is viewed as a form of specification of language semantics, that provides executable models of applications together with model-checking supports and effective runtime environments.

Electronic System Design for Respiratory Signal Processing

This paper presents the design related to the electronic system design of the respiratory signal, including phases for processing, followed by the transmission and reception of this signal and finally display. The processing of this signal is added to the ECG and temperature sign, put up last year. Under this scheme is proposed that in future also be conditioned blood pressure signal under the same final printed circuit and worked.

Efficient System for Speech Recognition using General Regression Neural Network

In this paper we present an efficient system for independent speaker speech recognition based on neural network approach. The proposed architecture comprises two phases: a preprocessing phase which consists in segmental normalization and features extraction and a classification phase which uses neural networks based on nonparametric density estimation namely the general regression neural network (GRNN). The relative performances of the proposed model are compared to the similar recognition systems based on the Multilayer Perceptron (MLP), the Recurrent Neural Network (RNN) and the well known Discrete Hidden Markov Model (HMM-VQ) that we have achieved also. Experimental results obtained with Arabic digits have shown that the use of nonparametric density estimation with an appropriate smoothing factor (spread) improves the generalization power of the neural network. The word error rate (WER) is reduced significantly over the baseline HMM method. GRNN computation is a successful alternative to the other neural network and DHMM.