The Estimation of Bird Diversity Loss and Gain as an Impact of Oil Palm Plantation: Study Case in KJNP Estate Riau Province

The rapid growth of oil palm industry in Indonesia raised many negative accusations from various parties, who said that oil palm plantation is damaging the environment and biodiversity, including birds. Since research on oil palm plantation impacts on bird diversity is still limited, this study needs to be developed in order to gain further learning and understanding. Data on bird diversity were collected in March 2018 in KJNP Estate, Riau Province using strip transect method on five different land cover types (young, intermediate, and old growth of oil palm plantation, high conservation value area, and crops field or the baseline). The observations were conducted simultaneously, with three repetitions. The result shows that the baseline has 19 species of birds and land cover after the oil palm plantation has 39 species. HCV (high conservation value) area has the highest increase in diversity value. Oil palm plantation has changed the composition of bird species. The highest similarity index is shown by young growth oil palm land cover with total score 0.65, meanwhile the lowest similarity index with total score 0.43 is shown by HCV area. Overall, the existence of oil palm plantation made a positive impact by increasing bird species diversity, with total 23 species gained and 3 species lost.

A Preliminary Study on Factors Determining the Success of High Conservation Value Area in Oil Palm Plantations

High Conservation Value (HCV) is an area with conservation function within oil palm plantation. Despite the important role of HCV area in biodiversity conservation and various studies on HCV, there was a lack of research studying the factors determining its success. A preliminary study was conducted to identify the determinant factor of HCV that affected the diversity. Line transect method was used to calculate the species diversity of butterfly, birds, mammals, and herpetofauna species as well as their richness. Specifically for mammals, camera traps were also used. The research sites comprised of 12 HCV areas in 3 provinces of Indonesia (Central Kalimantan, Riau, and Palembang). The relationship between the HCV biophysical factor with the species number and species diversity for each wildlife class was identified using Chi-Square analysis with Cross tab (contingency table). Results of the study revealed that species diversity varied by research locations. Four factors determining the success of HCV area in relations to the number and diversity of wildlife species are land cover types for mammals, the width of area and distance to rivers for birds, and distance to settlements for butterflies.

Indigenous Dayak People’s Perceptions of Wildlife Loss and Gain Related to Oil Palm Development

Controversies surrounding the impacts of oil palm plantations have resulted in some heated debates, especially concerning biodiversity loss and indigenous people well-being. The indigenous people of Dayak generally used wildlife to fulfill their daily needs thus were assumed to have experienced negative impacts due to oil palm developments within and surrounding their settlement areas. This study was conducted to identify the characteristics of the Dayak community settled around an oil palm plantation, to determine their perceptions of wildlife loss or gain as the results of the development of oil palm plantations, and to identify the determinant characteristic of the perceptions. The research was conducted on March 2018 in Nanga Tayap and Tajok Kayong Villages, which were located around the oil palm plantation of NTYE of Ketapang, West Kalimantan-Indonesia. Data were collected through in depth-structured interview, using closed and semi-open questionnaires and three-scale Likert statements. Interviews were conducted with 74 respondents using accidental sampling, and categorized into respondents who were dependent on oil palm for their livelihoods and those who were not. Data were analyzed using quantitative statistics method, Likert Scale, Chi-Square Test, Spearman Test, and Mann-Whitney Test. The research found that the indigenous Dayak people were aware of wildlife species loss and gain since the establishment of the plantation. Nevertheless, wildlife loss did not affect their social, economic, and cultural needs since they could find substitutions. It was found that prior to the plantation’s development, the local Dayak communities were already slowly experiencing some livelihood transitions through local village development. The only determinant characteristic of the community that influenced their perceptions of wildlife loss/gain was level of education.

Towards a Framework for Embedded Weight Comparison Algorithm with Business Intelligence in the Plantation Domain

Embedded systems have emerged as important elements in various domains with extensive applications in automotive, commercial, consumer, healthcare and transportation markets, as there is emphasis on intelligent devices. On the other hand, Business Intelligence (BI) has also been extensively used in a range of applications, especially in the agriculture domain which is the area of this research. The aim of this research is to create a framework for Embedded Weight Comparison Algorithm with Business Intelligence (EWCA-BI). The weight comparison algorithm will be embedded within the plantation management system and the weighbridge system. This algorithm will be used to estimate the weight at the site and will be compared with the actual weight at the plantation. The algorithm will be used to build the necessary alerts when there is a discrepancy in the weight, thus enabling better decision making. In the current practice, data are collected from various locations in various forms. It is a challenge to consolidate data to obtain timely and accurate information for effective decision making. Adding to this, the unstable network connection leads to difficulty in getting timely accurate information. To overcome the challenges embedding is done on a portable device that will have the embedded weight comparison algorithm to also assist in data capture and synchronize data at various locations overcoming the network short comings at collection points. The EWCA-BI will provide real-time information at any given point of time, thus enabling non-latent BI reports that will provide crucial information to enable efficient operational decision making. This research has a high potential in bringing embedded system into the agriculture industry. EWCA-BI will provide BI reports with accurate information with uncompromised data using an embedded system and provide alerts, therefore, enabling effective operation management decision-making at the site.

Identification of Healthy and BSR-Infected Oil Palm Trees Using Color Indices

Most of the oil palm plantations have been threatened by Basal Stem Rot (BSR) disease which causes serious economic impact. This study was conducted to identify the healthy and BSRinfected oil palm tree using thirteen color indices. Multispectral and thermal camera was used to capture 216 images of the leaves taken from frond number 1, 9 and 17. Indices of normalized difference vegetation index (NDVI), red (R), green (G), blue (B), near infrared (NIR), green – blue (GB), green/blue (G/B), green – red (GR), green/red (G/R), hue (H), saturation (S), intensity (I) and thermal index (T) were used. From this study, it can be concluded that G index taken from frond number 9 is the best index to differentiate between the healthy and BSR-infected oil palm trees. It not only gave high value of correlation coefficient (R=-0.962), but also high value of separation between healthy and BSR-infected oil palm tree. Furthermore, power and S model developed using G index gave the highest R2 value which is 0.985.