Detecting Community Structure in Amino Acid Interaction Networks

In this paper we introduce the notion of protein interaction network. This is a graph whose vertices are the protein-s amino acids and whose edges are the interactions between them. Using a graph theory approach, we observe that according to their structural roles, the nodes interact differently. By leading a community structure detection, we confirm this specific behavior and describe thecommunities composition to finally propose a new approach to fold a protein interaction network.

A Comparative Analysis of Performance and QoS Issues in MANETs

Mobile Ad hoc networks (MANETs) are collections of wireless mobile nodes dynamically reconfiguring and collectively forming a temporary network. These types of networks assume existence of no fixed infrastructure and are often useful in battle-field tactical operations or emergency search-and-rescue type of operations where fixed infrastructure is neither feasible nor practical. They also find use in ad hoc conferences, campus networks and commercial recreational applications carrying multimedia traffic. All of the above applications of MANETs require guaranteed levels of performance as experienced by the end-user. This paper focuses on key challenges in provisioning predetermined levels of such Quality of Service (QoS). It also identifies functional areas where QoS models are currently defined and used. Evolving functional areas where performance and QoS provisioning may be applied are also identified and some suggestions are provided for further research in this area. Although each of the above functional areas have been discussed separately in recent research studies, since these QoS functional areas are highly correlated and interdependent, a comprehensive and comparative analysis of these areas and their interrelationships is desired. In this paper we have attempted to provide such an overview.

A Hybrid Neural Network and Gravitational Search Algorithm (HNNGSA) Method to Solve well known Wessinger's Equation

This study presents a hybrid neural network and Gravitational Search Algorithm (HNGSA) method to solve well known Wessinger's equation. To aim this purpose, gravitational search algorithm (GSA) technique is applied to train a multi-layer perceptron neural network, which is used as approximation solution of the Wessinger's equation. A trial solution of the differential equation is written as sum of two parts. The first part satisfies the initial/ boundary conditions and does not contain any adjustable parameters and the second part which is constructed so as not to affect the initial/boundary conditions. The second part involves adjustable parameters (the weights and biases) for a multi-layer perceptron neural network. In order to demonstrate the presented method, the obtained results of the proposed method are compared with some known numerical methods. The given results show that presented method can introduce a closer form to the analytic solution than other numerical methods. Present method can be easily extended to solve a wide range of problems.

EAAC: Energy-Aware Admission Control Scheme for Ad Hoc Networks

The decisions made by admission control algorithms are based on the availability of network resources viz. bandwidth, energy, memory buffers, etc., without degrading the Quality-of-Service (QoS) requirement of applications that are admitted. In this paper, we present an energy-aware admission control (EAAC) scheme which provides admission control for flows in an ad hoc network based on the knowledge of the present and future residual energy of the intermediate nodes along the routing path. The aim of EAAC is to quantify the energy that the new flow will consume so that it can be decided whether the future residual energy of the nodes along the routing path can satisfy the energy requirement. In other words, this energy-aware routing admits a new flow iff any node in the routing path does not run out of its energy during the transmission of packets. The future residual energy of a node is predicted using the Multi-layer Neural Network (MNN) model. Simulation results shows that the proposed scheme increases the network lifetime. Also the performance of the MNN model is presented.

MITAutomatic ECG Beat Tachycardia Detection Using Artificial Neural Network

The application of Neural Network for disease diagnosis has made great progress and is widely used by physicians. An Electrocardiogram carries vital information about heart activity and physicians use this signal for cardiac disease diagnosis which was the great motivation towards our study. In our work, tachycardia features obtained are used for the training and testing of a Neural Network. In this study we are using Fuzzy Probabilistic Neural Networks as an automatic technique for ECG signal analysis. As every real signal recorded by the equipment can have different artifacts, we needed to do some preprocessing steps before feeding it to our system. Wavelet transform is used for extracting the morphological parameters of the ECG signal. The outcome of the approach for the variety of arrhythmias shows the represented approach is superior than prior presented algorithms with an average accuracy of about %95 for more than 7 tachy arrhythmias.

Definition of Foot Size Model using Kohonen Network

In order to define a new model of Tunisian foot sizes and for building the most comfortable shoes, Tunisian industrialists must be able to offer for their customers products able to put on and adjust the majority of the target population concerned. Moreover, the use of models of shoes, mainly from others country, causes a mismatch between the foot and comfort of the Tunisian shoes. But every foot is unique; these models become uncomfortable for the Tunisian foot. We have a set of measures produced from a 3D scan of the feet of a diverse population (women, men ...) and we try to analyze this data to define a model of foot specific to the Tunisian footwear design. In this paper we propose tow new approaches to modeling a new foot sizes model. We used, indeed, the neural networks, and specially the Kohonen network. Next, we combine neural networks with the concept of half-foot size to improve the models already found. Finally, it was necessary to compare the results obtained by applying each approach and we decide what-s the best approach that give us the most model of foot improving more comfortable shoes.

A Method for Controlling of Hand Prosthesis Based on Neural Network

The people are differed by their capabilities, skills and mental agilities. The evolution of human from childhood when they are completely dependent up to adultness the time they gradually set the dependency free is too complicated, by considering they have all started from almost one point but some become cleverer and some less. The main control command of a cybernetic hand should be posted by remaining healthy organs of disabled Person. These commands can be from several channels, which their recording and detecting are different and need complicated study. In this research, we suppose that, this stage has been done or in the other words, the command has been already sent and detected. So the main goal is to control a long hand, upper elbow hand missing, by an interest angle define by disabled. It means that, the system input is the position desired by disables and the output is the elbow-joint angle variation. Therefore the goal is a suitable control design based on neural network theory in order to meet the given mapping.

Analysis of a PWM Boost Inverter for Solar Home Application

Solar Cells are destined to supply electric energy beginning from primary resources. It can charge a battery up to 12V dc. For residential use an inverter for 12V dc to 220Vac conversion is desired. For this a static DC-AC converter is necessarily inserted between the solar cells and the distribution network. This paper describes a new P.W.M. strategy for a voltage source inverter. This modulation strategy reduces the energy losses and harmonics in the P.W.M. voltage source inverter. This technique allows the P.W.M. voltage source inverter to become a new feasible solution for solar home application.

Self-evolving Neural Networks Based On PSO and JPSO Algorithms

A self-evolution algorithm for optimizing neural networks using a combination of PSO and JPSO is proposed. The algorithm optimizes both the network topology and parameters simultaneously with the aim of achieving desired accuracy with less complicated networks. The performance of the proposed approach is compared with conventional back-propagation networks using several synthetic functions, with better results in the case of the former. The proposed algorithm is also implemented on slope stability problem to estimate the critical factor of safety. Based on the results obtained, the proposed self evolving network produced a better estimate of critical safety factor in comparison to conventional BPN network.

Key Issues and Challenges of Intrusion Detection and Prevention System: Developing Proactive Protection in Wireless Network Environment

Nowadays wireless technology plays an important role in public and personal communication. However, the growth of wireless networking has confused the traditional boundaries between trusted and untrusted networks. Wireless networks are subject to a variety of threats and attacks at present. An attacker has the ability to listen to all network traffic which becoming a potential intrusion. Intrusion of any kind may lead to a chaotic condition. In addition, improperly configured access points also contribute the risk to wireless network. To overcome this issue, a security solution that includes an intrusion detection and prevention system need to be implemented. In this paper, first the security drawbacks of wireless network will be analyzed then investigate the characteristics and also the limitations on current wireless intrusion detection and prevention system. Finally, the requirement of next wireless intrusion prevention system will be identified including some key issues which should be focused on in the future to overcomes those limitations.

A Software-Supported Methodology for Designing General-Purpose Interconnection Networks for Reconfigurable Architectures

Modern applications realized onto FPGAs exhibit high connectivity demands. Throughout this paper we study the routing constraints of Virtex devices and we propose a systematic methodology for designing a novel general-purpose interconnection network targeting to reconfigurable architectures. This network consists of multiple segment wires and SB patterns, appropriately selected and assigned across the device. The goal of our proposed methodology is to maximize the hardware utilization of fabricated routing resources. The derived interconnection scheme is integrated on a Virtex style FPGA. This device is characterized both for its high-performance, as well as for its low-energy requirements. Due to this, the design criterion that guides our architecture selections was the minimal Energy×Delay Product (EDP). The methodology is fully-supported by three new software tools, which belong to MEANDER Design Framework. Using a typical set of MCNC benchmarks, extensive comparison study in terms of several critical parameters proves the effectiveness of the derived interconnection network. More specifically, we achieve average Energy×Delay Product reduction by 63%, performance increase by 26%, reduction in leakage power by 21%, reduction in total energy consumption by 11%, at the expense of increase of channel width by 20%.

Enhanced Ant Colony Based Algorithm for Routing in Mobile Ad Hoc Network

Mobile Ad hoc network consists of a set of mobile nodes. It is a dynamic network which does not have fixed topology. This network does not have any infrastructure or central administration, hence it is called infrastructure-less network. The change in topology makes the route from source to destination as dynamic fixed and changes with respect to time. The nature of network requires the algorithm to perform route discovery, maintain route and detect failure along the path between two nodes [1]. This paper presents the enhancements of ARA [2] to improve the performance of routing algorithm. ARA [2] finds route between nodes in mobile ad-hoc network. The algorithm is on-demand source initiated routing algorithm. This is based on the principles of swarm intelligence. The algorithm is adaptive, scalable and favors load balancing. The improvements suggested in this paper are handling of loss ants and resource reservation.

On the Continuous Service of Distributed e-Learning System

In this paper, backup and recovery technique for Peer to Peer applications, such as a distributed asynchronous Web-Based Training system that we have previously proposed. In order to improve the scalability and robustness of this system, all contents and function are realized on mobile agents. These agents are distributed to computers, and they can obtain using a Peer to Peer network that modified Content-Addressable Network. In the proposed system, although entire services do not become impossible even if some computers break down, the problem that contents disappear occurs with an agent-s disappearance. As a solution for this issue, backups of agents are distributed to computers. If a failure of a computer is detected, other computers will continue service using backups of the agents belonged to the computer.

Automatic Extraction of Roads from High Resolution Aerial and Satellite Images with Heavy Noise

Aerial and satellite images are information rich. They are also complex to analyze. For GIS systems, many features require fast and reliable extraction of roads and intersections. In this paper, we study efficient and reliable automatic extraction algorithms to address some difficult issues that are commonly seen in high resolution aerial and satellite images, nonetheless not well addressed in existing solutions, such as blurring, broken or missing road boundaries, lack of road profiles, heavy shadows, and interfering surrounding objects. The new scheme is based on a new method, namely reference circle, to properly identify the pixels that belong to the same road and use this information to recover the whole road network. This feature is invariable to the shape and direction of roads and tolerates heavy noise and disturbances. Road extraction based on reference circles is much more noise tolerant and flexible than the previous edge-detection based algorithms. The scheme is able to extract roads reliably from images with complex contents and heavy obstructions, such as the high resolution aerial/satellite images available from Google maps.

Stealthy Network Transfer of Data

Users of computer systems may often require the private transfer of messages/communications between parties across a network. Information warfare and the protection and dominance of information in the military context is a prime example of an application area in which the confidentiality of data needs to be maintained. The safe transportation of critical data is therefore often a vital requirement for many private communications. However, unwanted interception/sniffing of communications is also a possibility. An elementary stealthy transfer scheme is therefore proposed by the authors. This scheme makes use of encoding, splitting of a message and the use of a hashing algorithm to verify the correctness of the reconstructed message. For this proof-of-concept purpose, the authors have experimented with the random sending of encoded parts of a message and the construction thereof to demonstrate how data can stealthily be transferred across a network so as to prevent the obvious retrieval of data.

A Bi-Objective Preventive Healthcare Facility Network Design with Incorporating Cost and Time Saving

Main goal of preventive healthcare problems are at decreasing the likelihood and severity of potentially life-threatening illnesses by protection and early detection. The levels of establishment and staffing costs along with summation of the travel and waiting time that clients spent are considered as objectives functions of the proposed nonlinear integer programming model. In this paper, we have proposed a bi-objective mathematical model for designing a network of preventive healthcare facilities so as to minimize aforementioned objectives, simultaneously. Moreover, each facility acts as M/M/1 queuing system. The number of facilities to be established, the location of each facility, and the level of technology for each facility to be chosen are provided as the main determinants of a healthcare facility network. Finally, to demonstrate performance of the proposed model, four multi-objective decision making techniques are presented to solve the model.

EEIA: Energy Efficient Indexed Aggregation in Smart Wireless Sensor Networks

The main idea behind in network aggregation is that, rather than sending individual data items from sensors to sinks, multiple data items are aggregated as they are forwarded by the sensor network. Existing sensor network data aggregation techniques assume that the nodes are preprogrammed and send data to a central sink for offline querying and analysis. This approach faces two major drawbacks. First, the system behavior is preprogrammed and cannot be modified on the fly. Second, the increased energy wastage due to the communication overhead will result in decreasing the overall system lifetime. Thus, energy conservation is of prime consideration in sensor network protocols in order to maximize the network-s operational lifetime. In this paper, we give an energy efficient approach to query processing by implementing new optimization techniques applied to in-network aggregation. We first discuss earlier approaches in sensors data management and highlight their disadvantages. We then present our approach “Energy Efficient Indexed Aggregation" (EEIA) and evaluate it through several simulations to prove its efficiency, competence and effectiveness.

A Selective 3-Anchor DV-Hop Algorithm Based On the Nearest Anchor for Wireless Sensor Network

Information of nodes’ locations is an important criterion for lots of applications in Wireless Sensor Networks. In the hop-based range-free localization methods, anchors transmit the localization messages counting a hop count value to the whole network. Each node receives this message and calculates its own distance with anchor in hops and then approximates its own position. However the estimative distances can provoke large error, and affect the localization precision. To solve the problem, this paper proposes an algorithm, which makes the unknown nodes fix the nearest anchor as a reference and select two other anchors which are the most accurate to achieve the estimated location. Compared to the DV-Hop algorithm, experiment results illustrate that proposed algorithm has less average localization error and is more effective.

Collaborative Mobile Device based Data Collection and Dissemination using MIH for Effective Emergency Management

The importance of our country-s communication system is noticeable when a disaster occurs. The communication system in our country includes wired and wireless telephone networks, radio, satellite system and more increasingly internet. Even though our communication system is most extensive and dependable, extreme conditions can put a strain on them. Interoperability between heterogeneous wireless networks can be used to provide efficient communication for emergency first response. IEEE 802.21 specifies Media Independent Handover (MIH) services to enhance the mobile user experience by optimizing handovers between heterogeneous access networks. This paper presents an algorithm to improve congestion control in MIH framework. It is analytically shown that by including time factor in network selection we can optimize congestion in the network.

Distributed Generator Placement for Loss Reduction and Improvement in Reliability

Distributed Power generation has gained a lot of attention in recent times due to constraints associated with conventional power generation and new advancements in DG technologies .The need to operate the power system economically and with optimum levels of reliability has further led to an increase in interest in Distributed Generation. However it is important to place Distributed Generator on an optimum location so that the purpose of loss minimization and voltage regulation is dully served on the feeder. This paper investigates the impact of DG units installation on electric losses, reliability and voltage profile of distribution networks. In this paper, our aim would be to find optimal distributed generation allocation for loss reduction subjected to constraint of voltage regulation in distribution network. The system is further analyzed for increased levels of Reliability. Distributed Generator offers the additional advantage of increase in reliability levels as suggested by the improvements in various reliability indices such as SAIDI, CAIDI and AENS. Comparative studies are performed and related results are addressed. An analytical technique is used in order to find the optimal location of Distributed Generator. The suggested technique is programmed under MATLAB software. The results clearly indicate that DG can reduce the electrical line loss while simultaneously improving the reliability of the system.