A Dynamic Decision Model for Vertical Handoffs across Heterogeneous Wireless Networks

The convergence of heterogeneous wireless access technologies characterizes the 4G wireless networks. In such converged systems, the seamless and efficient handoff between different access technologies (vertical handoff) is essential and remains a challenging problem. The heterogeneous co-existence of access technologies with largely different characteristics creates a decision problem of determining the “best" available network at “best" time to reduce the unnecessary handoffs. This paper proposes a dynamic decision model to decide the “best" network at “best" time moment to handoffs. The proposed dynamic decision model make the right vertical handoff decisions by determining the “best" network at “best" time among available networks based on, dynamic factors such as “Received Signal Strength(RSS)" of network and “velocity" of mobile station simultaneously with static factors like Usage Expense, Link capacity(offered bandwidth) and power consumption. This model not only meets the individual user needs but also improve the whole system performance by reducing the unnecessary handoffs.

Study of the Vertical Handoff in Heterogeneous Networks and Implement Based On Opnet

In this document we studied more in detail the Performances of the vertical handover in the networks WLAN, WiMAX, UMTS before studying of it the Procedure of Handoff Vertical, the whole buckled by simulations putting forward the performances of the handover in the heterogeneous networks. The goal of Vertical Handover is to carry out several accesses in real-time in the heterogeneous networks. This makes it possible a user to use several networks (such as WLAN UMTS andWiMAX) in parallel, and the system to commutate automatically at another basic station, without disconnecting itself, as if there were no cut and with little loss of data as possible.

Collaborative Mobile Device based Data Collection and Dissemination using MIH for Effective Emergency Management

The importance of our country-s communication system is noticeable when a disaster occurs. The communication system in our country includes wired and wireless telephone networks, radio, satellite system and more increasingly internet. Even though our communication system is most extensive and dependable, extreme conditions can put a strain on them. Interoperability between heterogeneous wireless networks can be used to provide efficient communication for emergency first response. IEEE 802.21 specifies Media Independent Handover (MIH) services to enhance the mobile user experience by optimizing handovers between heterogeneous access networks. This paper presents an algorithm to improve congestion control in MIH framework. It is analytically shown that by including time factor in network selection we can optimize congestion in the network.