A New Efficient RNS Reverse Converter for the 4-Moduli Set 

In this paper, we propose a new efficient reverse converter for the 4-moduli set {2n, 2n + 1, 2n − 1, 22n+1 – 1} based on a modified Chinese Remainder Theorem and Mixed Radix Conversion. Additionally, the resulting architecture is further reduced to obtain a reverse converter that utilizes only carry save adders, a multiplexer and carry propagate adders. The proposed converter has an area cost of (12n + 2) FAs and (5n + 1) HAs with a delay of (9n + 6)tFA + tMUX. When compared with state of the art, our proposal demonstrates to be faster, at the expense of slightly more hardware resources. Further, the Area-Time square metric was computed which indicated that our proposed scheme outperforms the state of the art reverse converter.

Longitudinal Shear Modulus of Single Aramid, Carbon and Glass Fibres by Torsion Pendulum Tests

The longitudinal shear moduli of a single aramid, carbon and glass fibres are measured in the present study. A popularly known concept of freely oscillating torsion pendulum has been used to characterize the torsional modulus. A simple freely oscillating torsional pendulum setup is designed with two different types of plastic discs: horizontal and vertical, as the known mass of the pendulum. The time period of the torsional oscillation is measured to determine the torsional rigidity of the fibre. Then the shear modulus of the fibre is calculated from its torsional rigidity. The mean shear modulus of aramid, carbon and glass fibres  measured are 6.22±0.09, 18.5±0.91, 38.1±3.55 GPa by horizontal disc pendulum and 6.19±0.13, 18.1±1.34 and 39.5±1.83 GPa by vertical disc pendulum, respectively. The results obtained by both pendulums differed by less than 5% and agreed well with the results reported in literature for these three types of fibres. A detailed uncertainty calculations are carried out for the measurements. It is seen that scatter as well as uncertainty (or error) in the measured shear modulus of these fibres is less than 10%. For aramid fibres the effect of gauge length on the shear modulus value is also studied. It is verified that the scatter in measured shear modulus value increases with gauge length and scatter in fibre diameter.

Evaluation of the FWD Moduli of a Flexible Pavement Using Finite Element Model

This study evaluates the back calculation of stiffness of a pavement section on Interstate 40 (I-40)in New Mexico through numerical analysis. Falling Weight Deflectometer (FWD) test has been conducted on a section on I-40. Layer stiffness of the pavement has been backcalculated by a backcalculation software, ELMOD, using the FWD test data. Commercial finite element software, ABAQUS, has been used to develop the Finite Element Model (FEM) of this pavement section. Geometry and layer thickness are collected from field coring. Input parameters i.e. stiffnesses of different layers of the pavement are used as the backcalculated ones. Resulting surface deflections at different radial distances from the FEM analysis are compared with field FWD deflection values. It shows close agreement between the FEM and FWD outputs. Therefore, the FWD test method can be considered to be a reliable test procedure for evaluating the in situ stiffness of pavement material.

A Fully Parallel Reverse Converter

The residue number system (RNS) is popular in high performance computation applications because of its carry-free nature. The challenges of RNS systems design lie in the moduli set selection and in the reverse conversion from residue representation to weighted representation. In this paper, we proposed a fully parallel reverse conversion algorithm for the moduli set {rn - 2, rn - 1, rn}, based on simple mathematical relationships. Also an efficient hardware realization of this algorithm is presented. Our proposed converter is very faster and results to hardware savings, compared to the other reverse converters.

Rapid Finite-Element Based Airport Pavement Moduli Solutions using Neural Networks

This paper describes the use of artificial neural networks (ANN) for predicting non-linear layer moduli of flexible airfield pavements subjected to new generation aircraft (NGA) loading, based on the deflection profiles obtained from Heavy Weight Deflectometer (HWD) test data. The HWD test is one of the most widely used tests for routinely assessing the structural integrity of airport pavements in a non-destructive manner. The elastic moduli of the individual pavement layers backcalculated from the HWD deflection profiles are effective indicators of layer condition and are used for estimating the pavement remaining life. HWD tests were periodically conducted at the Federal Aviation Administration-s (FAA-s) National Airport Pavement Test Facility (NAPTF) to monitor the effect of Boeing 777 (B777) and Beoing 747 (B747) test gear trafficking on the structural condition of flexible pavement sections. In this study, a multi-layer, feed-forward network which uses an error-backpropagation algorithm was trained to approximate the HWD backcalculation function. The synthetic database generated using an advanced non-linear pavement finite-element program was used to train the ANN to overcome the limitations associated with conventional pavement moduli backcalculation. The changes in ANN-based backcalculated pavement moduli with trafficking were used to compare the relative severity effects of the aircraft landing gears on the NAPTF test pavements.

Gravitino Dark Matter in (nearly) SLagy D3/D7 m-Split SUSY

In the context of large volume Big Divisor (nearly) SLagy D3/D7 μ-Split SUSY [1], after an explicit identification of first generation of SM leptons and quarks with fermionic superpartners of four Wilson line moduli, we discuss the identification of gravitino as a potential dark matter candidate by explicitly calculating the decay life times of gravitino (LSP) to be greater than age of universe and lifetimes of decays of the co-NLSPs (the first generation squark/slepton and a neutralino) to the LSP (the gravitino) to be very small to respect BBN constraints. Interested in non-thermal production mechanism of gravitino, we evaluate the relic abundance of gravitino LSP in terms of that of the co-NLSP-s by evaluating their (co-)annihilation cross sections and hence show that the former satisfies the requirement for a potential Dark Matter candidate. We also show that it is possible to obtain a 125 GeV light Higgs in our setup.

Efficient Power-Delay Product Modulo 2n+1 Adder Design

As embedded and portable systems were emerged power consumption of circuits had been major challenge. On the other hand latency as determines frequency of circuits is also vital task. Therefore, trade off between both of them will be desirable. Modulo 2n+1 adders are important part of the residue number system (RNS) based arithmetic units with the interesting moduli set (2n-1,2n, 2n+1). In this manuscript we have introduced novel binary representation to the design of modulo 2n+1 adder. VLSI realization of proposed architecture under 180 nm full static CMOS technology reveals its superiority in terms of area, power consumption and power-delay product (PDP) against several peer existing structures.

A Robust Redundant Residue Representation in Residue Number System with Moduli Set(rn-2,rn-1,rn)

The residue number system (RNS), due to its properties, is used in applications in which high performance computation is needed. The carry free nature, which makes the arithmetic, carry bounded as well as the paralleling facility is the reason of its capability of high speed rendering. Since carry is not propagated between the moduli in this system, the performance is only restricted by the speed of the operations in each modulus. In this paper a novel method of number representation by use of redundancy is suggested in which {rn- 2,rn-1,rn} is the reference moduli set where r=2k+1 and k =1, 2,3,.. This method achieves fast computations and conversions and makes the circuits of them much simpler.

A Novel Multiple Valued Logic OHRNS Modulo rn Adder Circuit

Residue Number System (RNS) is a modular representation and is proved to be an instrumental tool in many digital signal processing (DSP) applications which require high-speed computations. RNS is an integer and non weighted number system; it can support parallel, carry-free, high-speed and low power arithmetic. A very interesting correspondence exists between the concepts of Multiple Valued Logic (MVL) and Residue Number Arithmetic. If the number of levels used to represent MVL signals is chosen to be consistent with the moduli which create the finite rings in the RNS, MVL becomes a very natural representation for the RNS. There are two concerns related to the application of this Number System: reaching the most possible speed and the largest dynamic range. There is a conflict when one wants to resolve both these problem. That is augmenting the dynamic range results in reducing the speed in the same time. For achieving the most performance a method is considere named “One-Hot Residue Number System" in this implementation the propagation is only equal to one transistor delay. The problem with this method is the huge increase in the number of transistors they are increased in order m2 . In real application this is practically impossible. In this paper combining the Multiple Valued Logic and One-Hot Residue Number System we represent a new method to resolve both of these two problems. In this paper we represent a novel design of an OHRNS-based adder circuit. This circuit is useable for Multiple Valued Logic moduli, in comparison to other RNS design; this circuit has considerably improved the number of transistors and power consumption.

Characterization of Adhesive Layers in Sandwich Composites by Nondestructive Technique

New nondestructive technique, namely an inverse technique based on vibration tests, to characterize nonlinear mechanical properties of adhesive layers in sandwich composites is developed. An adhesive layer is described as a viscoelastic isotropic material with storage and loss moduli which are both frequency dependent values in wide frequency range. An optimization based on the planning of experiments and response surface technique to minimize the error functional is applied to decrease considerably the computational expenses. The developed identification technique has been tested on aluminum panels and successfully applied to characterize viscoelastic material properties of 3M damping polymer ISD-112 used as a core material in sandwich panels.

On Bounds For The Zeros of Univariate Polynomial

Problems on algebraical polynomials appear in many fields of mathematics and computer science. Especially the task of determining the roots of polynomials has been frequently investigated.Nonetheless, the task of locating the zeros of complex polynomials is still challenging. In this paper we deal with the location of zeros of univariate complex polynomials. We prove some novel upper bounds for the moduli of the zeros of complex polynomials. That means, we provide disks in the complex plane where all zeros of a complex polynomial are situated. Such bounds are extremely useful for obtaining a priori assertations regarding the location of zeros of polynomials. Based on the proven bounds and a test set of polynomials, we present an experimental study to examine which bound is optimal.

A Parallel Implementation of the Reverse Converter for the Moduli Set {2n, 2n–1, 2n–1–1}

In this paper, a new reverse converter for the moduli set {2n, 2n–1, 2n–1–1} is presented. We improved a previously introduced conversion algorithm for deriving an efficient hardware design for reverse converter. Hardware architecture of the proposed converter is based on carry-save adders and regular binary adders, without the requirement for modular adders. The presented design is faster than the latest introduced reverse converter for moduli set {2n, 2n–1, 2n–1–1}. Also, it has better performance than the reverse converters for the recently introduced moduli set {2n+1–1, 2n, 2n–1}

Finite Element Modeling of two-dimensional Nanoscale Structures with Surface Effects

Nanomaterials have attracted considerable attention during the last two decades, due to their unusual electrical, mechanical and other physical properties as compared with their bulky counterparts. The mechanical properties of nanostructured materials show strong size dependency, which has been explained within the framework of continuum mechanics by including the effects of surface stress. The size-dependent deformations of two-dimensional nanosized structures with surface effects are investigated in the paper by the finite element method. Truss element is used to evaluate the contribution of surface stress to the total potential energy and the Gurtin and Murdoch surface stress model is implemented with ANSYS through its user programmable features. The proposed approach is used to investigate size-dependent stress concentration around a nanosized circular hole and the size-dependent effective moduli of nanoporous materials. Numerical results are compared with available analytical results to validate the proposed modeling approach.