On One Mathematical Model for Filtration of Weakly Compressible Chemical Compound in the Porous Heterogeneous 3D Medium. Part I: Model Construction with the Aid of the Ollendorff Approach

A filtering problem of almost incompressible liquid chemical compound in the porous inhomogeneous 3D domain is studied. In this work general approaches to the solution of twodimensional filtering problems in ananisotropic, inhomogeneous and multilayered medium are developed, and on the basis of the obtained results mathematical models are constructed (according to Ollendorff method) for studying the certain engineering and technical problem of filtering the almost incompressible liquid chemical compound in the porous inhomogeneous 3D domain. For some of the formulated mathematical problems with additional requirements for the structure of the porous inhomogeneous medium, namely, its isotropy, spatial periodicity of its permeability coefficient, solution algorithms are proposed. Continuation of the current work titled ”On one mathematical model for filtration of weakly compressible chemical compound in the porous heterogeneous 3D medium. Part II: Determination of the reference directions of anisotropy and permeabilities on these directions” will be prepared in the shortest terms by the authors.

Optimising Data Transmission in Heterogeneous Sensor Networks

The transfer rate of messages in distributed sensor network applications is a critical factor in a system's performance. The Sensor Abstraction Layer (SAL) is one such system. SAL is a middleware integration platform for abstracting sensor specific technology in order to integrate heterogeneous types of sensors in a network. SAL uses Java Remote Method Invocation (RMI) as its connection method, which has unsatisfying transfer rates, especially for streaming data.  This paper analyses different connection methods to optimize data transmission in SAL by replacing RMI.  Our results show that the most promising Java-based connections were frameworks for Java New Input/Output (NIO) including Apache MINA, JBoss Netty, and xSocket. A test environment was implemented to evaluate each respective framework based on transfer rate, resource usage, and scalability. Test results showed the most suitable connection method to improve data transmission in SAL JBoss Netty as it provides a performance enhancement of 68%.

Semi-automatic Construction of Ontology-based CBR System for Knowledge Integration

In order to integrate knowledge in heterogeneous case-based reasoning (CBR) systems, ontology-based CBR system has become a hot topic. To solve the facing problems of ontology-based CBR system, for example, its architecture is nonstandard, reusing knowledge in legacy CBR is deficient, ontology construction is difficult, etc, we propose a novel approach for semi-automatically construct ontology-based CBR system whose architecture is based on two-layer ontology. Domain knowledge implied in legacy case bases can be mapped from relational database schema and knowledge items to relevant OWL local ontology automatically by a mapping algorithm with low time-complexity. By concept clustering based on formal concept analysis, computing concept equation measure and concept inclusion measure, some suggestions about enriching or amending concept hierarchy of OWL local ontologies are made automatically that can aid designers to achieve semi-automatic construction of OWL domain ontology. Validation of the approach is done by an application example.

Heterogeneous Artifacts Construction for Software Evolution Control

The software evolution control requires a deep understanding of the changes and their impact on different system heterogeneous artifacts. And an understanding of descriptive knowledge of the developed software artifacts is a prerequisite condition for the success of the evolutionary process. The implementation of an evolutionary process is to make changes more or less important to many heterogeneous software artifacts such as source code, analysis and design models, unit testing, XML deployment descriptors, user guides, and others. These changes can be a source of degradation in functional, qualitative or behavioral terms of modified software. Hence the need for a unified approach for extraction and representation of different heterogeneous artifacts in order to ensure a unified and detailed description of heterogeneous software artifacts, exploitable by several software tools and allowing to responsible for the evolution of carry out the reasoning change concerned.

Action Potential Propagation in Inhomogeneous 2D Mouse Ventricular Tissue Model

Heterogeneous repolarization causes dispersion of the T-wave and has been linked to arrhythmogenesis. Such heterogeneities appear due to differential expression of ionic currents in different regions of the heart, both in healthy and diseased animals and humans. Mice are important animals for the study of heart diseases because of the ability to create transgenic animals. We used our previously reported model of mouse ventricular myocytes to develop 2D mouse ventricular tissue model consisting of 14,000 cells (apical or septal ventricular myocytes) and to study the stability of action potential propagation and Ca2+ dynamics. The 2D tissue model was implemented as a FORTRAN program code for highperformance multiprocessor computers that runs on 36 processors. Our tissue model is able to simulate heterogeneities not only in action potential repolarization, but also heterogeneities in intracellular Ca2+ transients. The multicellular model reproduced experimentally observed velocities of action potential propagation and demonstrated the importance of incorporation of realistic Ca2+ dynamics for action potential propagation. The simulations show that relatively sharp gradients of repolarization are predicted to exist in 2D mouse tissue models, and they are primarily determined by the cellular properties of ventricular myocytes. Abrupt local gradients of channel expression can cause alternans at longer pacing basic cycle lengths than gradual changes, and development of alternans depends on the site of stimulation.

Influence of Heterogeneous Traffic on the Roadside Fine (PM2.5 and PM1) and Coarse(PM10) Particulate Matter Concentrations in Chennai City, India

In this paper the influence of heterogeneous traffic on the temporal variation of ambient PM10, PM2.5 and PM1 concentrations at a busy arterial route (Sardar Patel Road) in the Chennai city has been analyzed. The hourly PM concentration, traffic counts and average speed of the vehicles have been monitored at the study site for one week (19th-25th January 2009). Results indicated that the concentrations of coarse (PM10) and fine PM (PM2.5 and PM1) concentrations at SP road are having similar trend during peak and non-peak hours, irrespective of the days. The PM concentrations showed daily two peaks corresponding to morning (8 to 10 am) and evening (7 to 9 pm) peak hour traffic flow. The PM10 concentration is dominated by fine particles (53% of PM2.5 and 45% of PM1). The high PM2.5/PM10 ratio indicates that the majority of PM10 particles originate from re-suspension of road dust. The analysis of traffic flow at the study site showed that 2W, 3W and 4W are having similar diurnal trend as PM concentrations. This confirms that the 2W, 3W and 4W are the main emission source contributing to ambient PM concentration at SP road. The speed measurement at SP road showed that the average speed of 2W, 3W, 4W, LCV and HCV are 38, 40, 38, 40 and 38 km/hr and 43, 41, 42, 40 and 41 km/hr respectively for the weekdays and weekdays.

A Decision Support Tool for Evaluating Mobility Projects

Success is a European project that will implement several clean transport offers in three European cities and evaluate the environmental impacts. The goal of these measures is to improve urban mobility or the displacement of residents inside cities. For e.g. park and ride, electric vehicles, hybrid bus and bike sharing etc. A list of 28 criteria and 60 measures has been established for evaluation of these transport projects. The evaluation criteria can be grouped into: Transport, environment, social, economic and fuel consumption. This article proposes a decision support system based that encapsulates a hybrid approach based on fuzzy logic, multicriteria analysis and belief theory for the evaluation of impacts of urban mobility solutions. A web-based tool called DeSSIA (Decision Support System for Impacts Assessment) has been developed that treats complex data. The tool has several functionalities starting from data integration (import of data), evaluation of projects and finishes by graphical display of results. The tool development is based on the concept of MVC (Model, View, and Controller). The MVC is a conception model adapted to the creation of software's which impose separation between data, their treatment and presentation. Effort is laid on the ergonomic aspects of the application. It has codes compatible with the latest norms (XHTML, CSS) and has been validated by W3C (World Wide Web Consortium). The main ergonomic aspect focuses on the usability of the application, ease of learning and adoption. By the usage of technologies such as AJAX (XML and Java Script asynchrones), the application is more rapid and convivial. The positive points of our approach are that it treats heterogeneous data (qualitative, quantitative) from various information sources (human experts, survey, sensors, model etc.).

An Integrated Software Architecture for Bandwidth Adaptive Video Streaming

Video streaming over lossy IP networks is very important issues, due to the heterogeneous structure of networks. Infrastructure of the Internet exhibits variable bandwidths, delays, congestions and time-varying packet losses. Because of variable attributes of the Internet, video streaming applications should not only have a good end-to-end transport performance but also have a robust rate control, furthermore multipath rate allocation mechanism. So for providing the video streaming service quality, some other components such as Bandwidth Estimation and Adaptive Rate Controller should be taken into consideration. This paper gives an overview of video streaming concept and bandwidth estimation tools and then introduces special architectures for bandwidth adaptive video streaming. A bandwidth estimation algorithm – pathChirp, Optimized Rate Controllers and Multipath Rate Allocation Algorithm are considered as all-in-one solution for video streaming problem. This solution is directed and optimized by a decision center which is designed for obtaining the maximum quality at the receiving side.

Energy Efficient Clustering Algorithm with Global and Local Re-clustering for Wireless Sensor Networks

Wireless Sensor Networks consist of inexpensive, low power sensor nodes deployed to monitor the environment and collect data. Gathering information in an energy efficient manner is a critical aspect to prolong the network lifetime. Clustering  algorithms have an advantage of enhancing the network lifetime. Current clustering algorithms usually focus on global re-clustering and local re-clustering separately. This paper, proposed a combination of those two reclustering methods to reduce the energy consumption of the network. Furthermore, the proposed algorithm can apply to homogeneous as well as heterogeneous wireless sensor networks. In addition, the cluster head rotation happens, only when its energy drops below a dynamic threshold value computed by the algorithm. The simulation result shows that the proposed algorithm prolong the network lifetime compared to existing algorithms.

Data Placement in Heterogeneous Storage of Short Videos

The overall service performance of I/O intensive system depends mainly on workload on its storage system. In heterogeneous storage environment where storage elements from different vendors with different capacity and performance are put together, workload should be distributed according to storage capability. This paper addresses data placement issue in short video sharing website. Workload contributed by a video is estimated by the number of views and life time span of existing videos in same category. Experiment was conducted on 42,000 video titles in six weeks. Result showed that the proposed algorithm distributed workload and maintained balance better than round robin and random algorithms.

Analysis and Classification of Hiv-1 Sub- Type Viruses by AR Model through Artificial Neural Networks

HIV-1 genome is highly heterogeneous. Due to this variation, features of HIV-I genome is in a wide range. For this reason, the ability to infection of the virus changes depending on different chemokine receptors. From this point of view, R5 HIV viruses use CCR5 coreceptor while X4 viruses use CXCR5 and R5X4 viruses can utilize both coreceptors. Recently, in Bioinformatics, R5X4 viruses have been studied to classify by using the experiments on HIV-1 genome. In this study, R5X4 type of HIV viruses were classified using Auto Regressive (AR) model through Artificial Neural Networks (ANNs). The statistical data of R5X4, R5 and X4 viruses was analyzed by using signal processing methods and ANNs. Accessible residues of these virus sequences were obtained and modeled by AR model since the dimension of residues is large and different from each other. Finally the pre-processed data was used to evolve various ANN structures for determining R5X4 viruses. Furthermore ROC analysis was applied to ANNs to show their real performances. The results indicate that R5X4 viruses successfully classified with high sensitivity and specificity values training and testing ROC analysis for RBF, which gives the best performance among ANN structures.

Flocking Behaviors for Multiple Groups with Heterogeneous Agents

Most of researches for conventional simulations were studied focusing on flocks with a single species. While there exist the flocking behaviors with a single species in nature, the flocking behaviors are frequently observed with multi-species. This paper studies on the flocking simulation for heterogeneous agents. In order to simulate the flocks for heterogeneous agents, the conventional method uses the identifier of flock, while the proposed method defines the feature vector of agent and uses the similarity between agents by comparing with those feature vectors. Based on the similarity, the paper proposed the attractive force and repulsive force and then executed the simulation by applying two forces. The results of simulation showed that flock formation with heterogeneous agents is very natural in both cases. In addition, it showed that unlike the existing method, the proposed method can not only control the density of the flocks, but also be possible for two different groups of agents to flock close to each other if they have a high similarity.

Modeling Directional Thermal Radiance Anisotropy for Urban Canopy

one of the significant factors for improving the accuracy of Land Surface Temperature (LST) retrieval is the correct understanding of the directional anisotropy for thermal radiance. In this paper, the multiple scattering effect between heterogeneous non-isothermal surfaces is described rigorously according to the concept of configuration factor, based on which a directional thermal radiance model is built, and the directional radiant character for urban canopy is analyzed. The model is applied to a simple urban canopy with row structure to simulate the change of Directional Brightness Temperature (DBT). The results show that the DBT is aggrandized because of the multiple scattering effects, whereas the change range of DBT is smoothed. The temperature difference, spatial distribution, emissivity of the components can all lead to the change of DBT. The “hot spot" phenomenon occurs when the proportion of high temperature component in the vision field came to a head. On the other hand, the “cool spot" phenomena occur when low temperature proportion came to the head. The “spot" effect disappears only when the proportion of every component keeps invariability. The model built in this paper can be used for the study of directional effect on emissivity, the LST retrieval over urban areas and the adjacency effect of thermal remote sensing pixels.

Sentiment Analysis: Popularity of Candidates for the President of the United States

This article deals with the popularity of candidates for the president of the United States of America. The popularity is assessed according to public comments on the Web 2.0. Social networking, blogging and online forums (collectively Web 2.0) are for common Internet users the easiest way to share their personal opinions, thoughts, and ideas with the entire world. However, the web content diversity, variety of technologies and website structure differences, all of these make the Web 2.0 a network of heterogeneous data, where things are difficult to find for common users. The introductory part of the article describes methodology for gathering and processing data from Web 2.0. The next part of the article is focused on the evaluation and content analysis of obtained information, which write about presidential candidates.

Complex Dynamics of Bertrand Duopoly Games with Bounded Rationality

A dynamic of Bertrand duopoly game is analyzed, where players use different production methods and choose their prices with bounded rationality. The equilibriums of the corresponding discrete dynamical systems are investigated. The stability conditions of Nash equilibrium under a local adjustment process are studied. The stability conditions of Nash equilibrium under a local adjustment process are studied. The stability of Nash equilibrium, as some parameters of the model are varied, gives rise to complex dynamics such as cycles of higher order and chaos. On this basis, we discover that an increase of adjustment speed of bounded rational player can make Bertrand market sink into the chaotic state. Finally, the complex dynamics, bifurcations and chaos are displayed by numerical simulation.

Design and Implementation of Rule-based Expert System for Fault Management

It has been defined that the “network is the system". This implies providing levels of service, reliability, predictability and availability that are commensurate with or better than those that individual computers provide today. To provide this requires integrated network management for interconnected networks of heterogeneous devices covering both the local campus. In this paper we are addressing a framework to effectively deal with this issue. It consists of components and interactions between them which are required to perform the service fault management. A real-world scenario is used to derive the requirements which have been applied to the component identification. An analysis of existing frameworks and approaches with respect to their applicability to the framework is also carried out.

Effect of Medium Capacity on the Relationship between Chemical Heterogeneity and Linearly Adsorbed Solute Dispersion into Fixed Beds

The paper aims at investigating influence of medium capacity on linear adsorbed solute dispersion into chemically heterogeneous fixed beds. A discrete chemical heterogeneity distribution is considered in the one-dimensional advectivedispersive equation. The partial differential equation is solved using finite volumes method based on the Adam-Bashforth algorithm. Increased dispersion is estimated by comparing breakthrough curves second order moments and keeping identical hydrodynamic properties. As a result, dispersion increase due to chemical heterogeneity depends on the column size and surprisingly on the solid capacity. The more intense capacity is, the more important solute dispersion is. Medium length which is known to favour this effect vanishing according to the linear adsorption in fixed bed seems to create nonmonotonous variation of dispersion because of the heterogeneity. This nonmonotonous behaviour is also favoured by high capacities.

An Efficient Run Time Interface for Heterogeneous Architecture of Large Scale Supercomputing System

In this paper we propose a novel Run Time Interface (RTI) technique to provide an efficient environment for MPI jobs on the heterogeneous architecture of PARAM Padma. It suggests an innovative, unified framework for the job management interface system in parallel and distributed computing. This approach employs proxy scheme. The implementation shows that the proposed RTI is highly scalable and stable. Moreover RTI provides the storage access for the MPI jobs in various operating system platforms and improve the data access performance through high performance C-DAC Parallel File System (C-PFS). The performance of the RTI is evaluated by using the standard HPC benchmark suites and the simulation results show that the proposed RTI gives good performance on large scale supercomputing system.

Server Virtualization Using User Behavior Model Focus on Provisioning Concept

Server provisioning is one of the most attractive topics in virtualization systems. Virtualization is a method of running multiple independent virtual operating systems on a single physical computer. It is a way of maximizing physical resources to maximize the investment in hardware. Additionally, it can help to consolidate servers, improve hardware utilization and reduce the consumption of power and physical space in the data center. However, management of heterogeneous workloads, especially for resource utilization of the server, or so called provisioning becomes a challenge. In this paper, a new concept for managing workloads based on user behavior is presented. The experimental results show that user behaviors are different in each type of service workload and time. Understanding user behaviors may improve the efficiency of management in provisioning concept. This preliminary study may be an approach to improve management of data centers running heterogeneous workloads for provisioning in virtualization system.

Economy-Based Computing with WebCom

Grid environments consist of the volatile integration of discrete heterogeneous resources. The notion of the Grid is to unite different users and organisations and pool their resources into one large computing platform where they can harness, inter-operate, collaborate and interact. If the Grid Community is to achieve this objective, then participants (Users and Organisations) need to be willing to donate or share their resources and permit other participants to use their resources. Resources do not have to be shared at all times, since it may result in users not having access to their own resource. The idea of reward-based computing was developed to address the sharing problem in a pragmatic manner. Participants are offered a reward to donate their resources to the Grid. A reward may include monetary recompense or a pro rata share of available resources when constrained. This latter point may imply a quality of service, which in turn may require some globally agreed reservation mechanism. This paper presents a platform for economybased computing using the WebCom Grid middleware. Using this middleware, participants can configure their resources at times and priority levels to suit their local usage policy. The WebCom system accounts for processing done on individual participants- resources and rewards them accordingly.