Enhancement of Impingement Heat Transfer on a Flat Plate with Ribs

Impinging jets are widely used in industrial cooling systems for their high heat transfer characteristics at stagnation points. However, the heat transfer characteristics are low in the downstream direction. In order to improve the heat transfer coefficient further downstream, investigations introducing ribs on jet-cooled flat plates have been conducted. Most studies regarding the heat-transfer enhancement using a rib-roughened wall have dealt with the rib pitch. In this paper, we focused on the rib spacing and demonstrated that the rib spacing must be more than 6 times the nozzle width to improve heat transfer at Reynolds number Re=5.0×103 because it is necessary to have enough space to allow reattachment of flow behind the first rib.

Heat Transfer at Convective Solid Melting in Fixed Bed

A method to determine experimentally the melting rate, rm, and the heat transfer coefficients, αv (W/(m3K)), at convective melting in a fixed bed of particles under adiabatic regime is established in this paper. The method lies in the determining of the melting rate by measuring the fixed bed height in time. Experimental values of rm, α and α v were determined using cylindrical particles of ice (d = 6.8 mm, h = 5.5 mm) and, as a melting agent, aqueous NaCl solution with a temperature of 283 K at different values of the liquid flow rate (11.63·10-6, 28.83·10-6, 38.83·10-6 m3/s). Our experimental results were compared with those existing in literature being noticed a good agreement for Re values higher than 50.

Application of CFD for Air Flow Analysis underneath Natural Ventilation with Forced Convection in Roof Attic

In research on natural ventilation, and passive cooling with forced convection, is essential to know how heat flows in a solid object and the pattern of temperature distribution on their surfaces, and eventually how air flows through and convects heat from the surfaces of steel under roof. This paper presents some results from running the computational fluid dynamic program (CFD) by comparison between natural ventilation and forced convection within roof attic that is received directly from solar radiation. The CFD program for modeling air flow inside roof attic has been modified to allow as two cases. First case, the analysis under natural ventilation, is closed area in roof attic and second case, the analysis under forced convection, is opened area in roof attic. These extend of all cases to available predictions of variations such as temperature, pressure, and mass flow rate distributions in each case within roof attic. The comparison shows that this CFD program is an effective model for predicting air flow of temperature and heat transfer coefficient distribution within roof attic. The result shows that forced convection can help to reduce heat transfer through roof attic and an around area of steel core has temperature inner zone lower than natural ventilation type. The different temperature on the steel core of roof attic of two cases was 10-15 oK.

Heat Transfer Coefficients for Particulate Airflow in Shell and Coiled Tube Heat Exchangers

In this work, we experimentally study heat transfer from exhaust particulate air of detergent spray drying tower to water by using coiled tube heat exchanger. Water flows in the coiled tubes, where air loaded with detergent particles of 43 micrometers in diameter flows within the shell. Four coiled tubes with different coil pitches are used in a counter-current flow configuration. We investigate heat transfer coefficients of inside and outside the heat transfer surfaces through 400 experiments. The correlations between Nusselt number and Reynolds number, Prandtl number, mass flow rate of particulates to mass flow rate of air ratio and coiled tube pitch parameter are proposed. The correlations procured can be used to predicted heat transfer between tube and shell of the heat exchanger.

Numerical Simulation of Minimum Distance Jet Impingement Heat Transfer

Impinging jets are used in various industrial areas as a cooling and drying technique. The current research is concerned with the means of improving the heat transfer for configurations with a minimum distance of the nozzle to the impingement surface. The impingement heat transfer is described using numerical methods over a wide range of parameters for an array of planar jets. These parameters include varying jet flow speed, width of nozzle, distance of nozzle, angle of the jet flow, velocity and geometry of the impingement surface. Normal pressure and shear stress are computed as additional parameters. Using dimensionless characteristic numbers the parameters and the results are correlated to gain generalized equations. The results demonstrate the effect of the investigated parameters on the flow.

From Experiments to Numerical Modeling: A Tool for Teaching Heat Transfer in Mechanical Engineering

In this work the numerical simulation of transient heat transfer in a cylindrical probe is done. An experiment was conducted introducing a steel cylinder in a heating chamber and registering its surface temperature along the time during one hour. In parallel, a mathematical model was solved for one dimension transient heat transfer in cylindrical coordinates, considering the boundary conditions of the test. The model was solved using finite difference method, because the thermal conductivity in the cylindrical steel bar and the convection heat transfer coefficient used in the model are considered temperature dependant functions, and both conditions prevent the use of the analytical solution. The comparison between theoretical and experimental results showed the average deviation is below 2%. It was concluded that numerical methods are useful in order to solve engineering complex problems. For constant k and h, the experimental methodology used here can be used as a tool for teaching heat transfer in mechanical engineering, using mathematical simplified models with analytical solutions.

Simulation of Heat Transfer in the Multi-Layer Door of the Furnace

The temperature distribution and the heat transfer rates through a multi-layer door of a furnace were investigated. The inside of the door was in contact with hot air and the other side of the door was in contact with room air. Radiation heat transfer from the walls of the furnace to the door and the door to the surrounding area was included in the problem. This work is a two dimensional steady state problem. The Churchill and Chu correlation was used to find local convection heat transfer coefficients at the surfaces of the furnace door. The thermophysical properties of air were the functions of the temperatures. Polynomial curve fitting for the fluid properties were carried out. Finite difference method was used to discretize for conduction heat transfer within the furnace door. The Gauss-Seidel Iteration was employed to compute the temperature distribution in the door. The temperature distribution in the horizontal mid plane of the furnace door in a two dimensional problem agrees with the one dimensional problem. The local convection heat transfer coefficients at the inside and outside surfaces of the furnace door are exhibited.

Numerical Simulation of Heat Transfer in Primary Surface with Corrugations Recuperators

Study fluid flow and heat transfer characteristics of microchannel in a primary Cross-corrugated(CC) surface recuperators with corrugations and without corrugations, using CFD method. The pitch-over-height ratios P/H of Cross-corrugated (CC) surface is from 1.5 to 4.0, included angles β=75º. The study was performed using CFD software FLUENT to create unit model and simulate fluid temperature, velocity, heat transfer coefficient and other parameters. The results from these simulations were compared to experimental data. It is concluded that, when the Reynolds number is constant, if increase P/H, j/f will decrease, also the decreasing trend will become weak. Under the condition of P/H=2.2, if increase the inlet velocity j/f will decrease; in addition, the heat transfer performance in surface with corrugation will increase 10% compared to that without corrugation. The study results can provide the basis to optimize the design, select the type of heat transfer surface, the scale structure, and heat-transfer surface arrangement for recuperators.

Effect of Particle Size in Aviation Turbine Fuel-Al2O3 Nanofluids for Heat Transfer Applications

The effect of Alumina nanoparticle size on thermophysical properties, heat transfer performance and pressure loss characteristics of Aviation Turbine Fuel (ATF)-Al2O3 nanofluids is studied experimentally for the proposed application of regenerative cooling of semi-cryogenic rocket engine thrust chambers. Al2O3 particles with mean diameters of 50 nm or 150 nm are dispersed in ATF. At 500C and 0.3% particle volume concentration, the bigger particles show increases of 17% in thermal conductivity and 55% in viscosity, whereas the smaller particles show corresponding increases of 21% and 22% for thermal conductivity and viscosity respectively. Contrary to these results, experiments to study the heat transfer performance and pressure loss characteristics show that at the same pumping power, the maximum enhancement in heat transfer coefficient at 500C and 0.3% concentration is approximately 47% using bigger particles, whereas it is only 36% using smaller particles.

CFD Simulation of Condensing Vapor Bubble using VOF Model

In this study, direct numerical simulation for the bubble condensation in the subcooled boiling flow was performed. The main goal was to develop the CFD modeling for the bubble condensation and to evaluate the accuracy of the VOF model with the developed CFD modeling. CFD modeling for the bubble condensation was developed by modeling the source terms in the governing equations of VOF model using UDF. In the modeling, the amount of condensation was determined using the interfacial heat transfer coefficient obtained from the bubble velocity, liquid temperature and bubble diameter every time step. To evaluate the VOF model using the CFD modeling for the bubble condensation, CFD simulation results were compared with SNU experimental results such as bubble volume and shape, interfacial area, bubble diameter and bubble velocity. Simulation results predicted well the behavior of the actual condensing bubble. Therefore, it can be concluded that the VOF model using the CFD modeling for the bubble condensation will be a useful computational fluid dynamics tool for analyzing the behavior of the condensing bubble in a wide range of the subcooled boiling flow.